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9.5 Confidence intervals 98

9.5.1 Standard error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.5.2 Interpreting confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.5.3 The width of a confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.5.4 Confidence level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.1 Null and alternative hypotheses 105
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1. Introduction

1.1 About this Book

This book is intended for a second year undergraduate course in an Economics program.
It is a short text, focusing on specific needs. Most of the material in the book should
be covered in a single semester course.

1.2 Quantitative Methods

Quantitative methods encompass the collection of data, and what is done with it. It in-
cludes rearranging, summarizing, and visualizing data; calculating statistics; describing
relationships between variables using scatterplots and correlation coefficients; conduct-
ing hypothesis tests and calculating confidence intervals; and estimating models using
least-squares.

There is much overlap between statistics, econometrics, and quantitative methods.
This book focusses less on theory than a statistics or econometrics book would, and
more on explaining how to accomplish methods in practice. However, this book overlaps
quite a bit with introductory statistics and econometrics.

The ultimate goal is to build the tools necessary to begin analyzing causal effects.
We are careful throughout the book to always remember that the methods discussed
can never confirm causation.

1.3 Objectives

Some objectives of this text are the following:

� Explore and describe data used to inform decisions in economics.
� Review and expand basic concepts of probability and random variables.
� Draw conclusions about a population or process from sample data.
� Model a response based on an explanatory variable.
� Perform quantitative analysis using R.
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1.4 Format of this Book

Definitions, quotations, examples, and R code are formatted separately from the main
text.

Definitions in the text. Important definitions and points will appear in these boxes.

“How do I know when something is a quote, or an important question?” asked the
student.

Example 1.1 This is an example of the examples you will see in this book. They
will appear in these boxes.

print("R Code will be displayed in these boxes.")

[1] "R Code will be displayed in these boxes."

The upper box contains the input, and the lower box contains the output.

1.5 Acknowledgements

Janelle Mann for arranging funding for the book, for help with outline, content, and
edits. University of Manitoba for providing financial support. Cover images and chapter
heading images produced by NASA and the Space Telescope Science Institute (STScI).
Statistics performed using R and RStudio. Figures produced using R and Inkscape.

https://www.r-project.org/
https://www.rstudio.com/
https://inkscape.org/Inkscape


2. The R Programming Language

2.1 What is R?

Although R is a programming language, it is unlike most others. It is designed to
analyse data. It isn’t too difficult to learn, and is extremely popular. R has the
advantage that it is free and open-source, and that thousands of users have contributed
“add-on” packages that are readily downloadable by anyone.

R is found in all areas of academia that encounter data, and in many private and
public organizations. R is great for any job or task that uses data.

2.2 Where to get R

In this book, we will use R and RStudio. Both are free and open-source. Download and
install R first: https://cran.r-project.org/bin/windows/base/ (for Windows) or
https://cran.r-project.org/bin/macosx/ (for Mac). Then, download and install
RStudio from https://www.rstudio.com/products/rstudio/download/.

2.3 Getting started with RStudio

2.3.1 Open RStudio

Search your computer for RStudio.exe and open the application. It should look some-
thing like this:

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/
https://www.rstudio.com/products/rstudio/download/
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2.3.2 Create a “script” file

A script file is a file where you can type and save your R computer code. To open a
script file, click on “File”, “New File”, “R Script”.

� In the top left is your Script file. R commands can be run from the R Script file,
and saved at any time.

� In the bottom left is the Console window. Output is displayed here. R commands
can be run from the Console, but not saved.

� In the top right is the Environment. Data and variables will be visible here.
� The bottom right will display graphics (e.g. histograms and scatterplots).

2.3.3 Running R code

Copy and paste the following R code into the script window:
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print("Hello, World!")

Run the code by highlighting it, or making sure the cursor is active at the end of the
line, and clicking “Run” (you can also press Ctrl + Enter on PC or Cmd + Return on
Mac).

Often we will display R output in boxes. The output from your program is reproduced
in the box below:

[1] "Hello, World!"

2.4 Use R as a calculator

R’s arithmetic operators include:

Operator Function

+ addition
- subtraction
* multiplication
/ division
^ exponentiation

Example 2.1 — Arithmetic in R. Use R to perform the following arithmetic opera-
tions:

1. 3 + 5

3 + 5

[1] 8
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2. 12− 4

12 - 4

[1] 8

3. 2× 13

2 * 13

[1] 26

4. 16/4

16 / 4

[1] 4

5. 28

2 ^ 8

[1] 256

6. 10+6
2

(10 + 6) / 2

[1] 8

2.5 Create an object

You can create objects in R. Objects can be vectors, matrices, character strings, data
frames, scalars etc. Create two different scalars. Give them any name you like, but
object names cannot start with a number and cannot include certain characters like
“!”:

a <- 3

b <- 5

We have created two new objects called a and b, and have assigned them values
using the assignment operator <- (the “less than” symbol followed by the “minus”
symbol). Notice that a and b pop up in the top-right of your screen (the Environment
window). We can now refer to these objects by name:

a * b

[1] 15

produces the output 15. To create a vector in R we use the “combine” function, c():
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myvector <- c(1, 2, 4, 6, 7)

Notice that after creating it, the myvector object appears in the top-right Environment
window. myvector is just a list of numbers:

myvector =


1
2
4
6
7


2.6 Simple functions in R

Function (programming). Similar to a function in mathematics, a function in com-
puter programming takes an input and produces an output.

Table 2.1: Simple R functions.

Function

sum()

mean()

var()

summary()

A “function” in computer coding is much like a function in mathematics; it takes
an input, performs an operation, and then provides an output. In R, we type the name
of the function and then type the input inside of parentheses: function.name(input).
After we click the “Run” button, we get the output. The function could be as simple as
adding up two numbers, estimating a very complicated statistical model, or producing
a graph. There are thousands of functions in R, and you can even make your own!
We’ll try a few simple ones to begin with:

Example 2.2 To add up all of the numbers in myvector we would run:

sum(myvector)

[1] 20

which provides the output 20. We have asked the computer to add up an object by
calling the function sum(), and putting the name of the object myvector inside of
the parentheses. Try all of the functions in Table 2.1 on myvector.

2.7 Logical operators

Logical operators. Logical operators can check which values of a variable satisfy a
certain condition, allowing us to create “subsets” of data.

Logical operators are used to determine whether something is TRUE or FALSE. Some
logical operators are:
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Operator Function

> greater than
== equal to
< less than
>= greater than or equal to
<= less than or equal to
!= not equal to

Logical operators are useful for creating “subsamples” or “subsets” from our data.
Using logical operators, we can calculate statistics separately for ethnicities, treatment
group vs. control group, developed vs. developing countries, etc. (we will see how
to do this later). For now, let’s try some simple logical operations. Try entering and
running each of the following lines of code one by one:

8 > 4

[1] TRUE

b == 6

[1] FALSE

b > 2

[1] TRUE

To check to see which elements in myvector are greater than 3 we use:

myvector > 3

[1] FALSE FALSE TRUE TRUE TRUE

2.7.1 Multiple logical operators

Sometimes we would like to create subsets in our data based on multiple conditions or
characteristics. For example, we might want to study a subset of our data consisting
of only single or widowed women with 1 child or more. The “and” / “or” operators are
useful in these situations:

Operator Function

& “and”
| “or”

For example, the following line of code:

myvector > 3 & myvector < 7

[1] FALSE FALSE TRUE TRUE FALSE

checks to see whether each element in myvector is greater than 3 and less than 7.



2.8 Loading data into R 16

2.8 Loading data into R

CSV format. A common and simple format for data files. These data files have the
extension .csv and can be opened in applications like Excel, and in most economet-
rics and statistical software packages.

There are several ways to load data into R. We cover three of them here. In this
book, we work mostly with the comma-separated values file format (CSV format).

2.8.1 Directly from the internet

We can use the R code:

mydata <- read.csv("file location.csv")

We need to replace file location with the actual location of the file, either on the
internet or on your computer. We can also replace the name of the data set mydata
with any name we like. For example, to load data directly from the internet into R,
try the following:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

After running the above line of code, you should see the data set appear in the top-right
of RStudio (the environment pane).

2.8.2 From a location on your computer

After saving a .csv file to your computer, you can use the read.csv() command to
load the file from its location on your computer. For example:

mars <- read.csv("c:/data/mars.csv")

loads a file from the location c:/data/.

2.8.3 file.choose()

Using the file.choose() command will prompt you to select the file using file explorer:
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mars <- read.csv(file.choose())

2.9 View your data in spreadsheet form

Click on the spreadsheet icon next to your mars data set, or run the following command:

View(mars)

Note the uppercase V (R is case sensitive). This command allows you to view your
data in spreadsheet form. See Figure 2.1.

Figure 2.1: View your data in spreadsheet form.

2.10 Scientific notation in R output

R’s default is to report numbers with many digits in scientific notation. For example,
the number 1 million (1000000) is written in scientific notation as 1× 106. We can see
this notation in R using:

my.number <- 1000000

my.number

[1] 1e+06

The e in the output signifies an exponent to base 10. Similarly, the number 0.0000001
would be output as 1e-06 (note the negative sign on the exponent).

The scientific notation can be difficult to read at times, and you can suppress this
notation using options(scipen=999). Try this option, and print out my.number again:

options(scipen=999)

my.number

[1] 1000000



3. Collecting Data

Quantitative and statistical studies are often trying to provide answers. The key feature
that differentiates quantitative analysis from other methods that attempt to provide
answers, is the use of data collected through experimentation, or by simply observing
what happens.

Where does data come from? In this chapter, we discuss various sources of data,
and issues involved with collecting or obtaining data. Not all data are created equally.
Some are better at answering specific questions than others, and some may not be
useful at all!

Several aspects of the data collection process can lead to sampling bias. In this chap-
ter, we will discuss situations in which the data set might not represent the population,
in ways that create misleading statistical conclusions.

3.1 Data sources

The usefulness of data can depend on how it was created or collected. Some data
sets are much better than others. For example, experimental data is almost always
better than observational data. Anecdotal data is not very useful for quantitative and
statistical analyses.

Data is often used to infer some property of the population. In most cases however,
it is not feasible to collect information on every member of the population, and so a
sample must instead be used. How the sample is determined can also affect the quality
of the data.

In this section, we discuss various data sources. Then, we will define the terms
sample and population, before talking about sampling bias and the importance of simple
random samples. A lot of key words have just been used! We will sort out what all of
them mean in the coming sections.

3.1.1 Anecdotal evidence

Anecdotal evidence. Anecdotal evidence is based on individual experiences.
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Other people’s explanations or accounts of their experiences, when used to form an
opinion or come to a conclusion or answer some interesting question, is called anecdotal
evidence. Anecdotal evidence is very important for many areas of research such as
history, but is not very useful for economists and other wielders of quantitative methods.

Anecdotal evidence is not very useful in statistical analysis because the sample size
is very low (typically 1 or 2). Later on, we will learn the importance of having a sample
size as large as possible, and that when our sample is small we cannot be very confident
about the conclusions that we draw.

An anecdote for example, is:

“My friend Homer has an anti-tiger rock, and has never been attacked by a tiger.”

Another anecdote:

“My friend Pooh doesn’t have an anti-tiger rock, and is continuously attacked by a
tiger.”

From these anecdotes, one might be tempted to draw the conclusion that anti-tiger
rocks prevent tiger attacks. From the standpoint of the statistician, this information
is not very valuable because it only contains 2 data points. The data set from these
anecdotes might look something like Table 3.1.

Table 3.1: Data set from anecdotal evidence.

name anti-tiger rock? tiger attack?

Homer Yes No
Pooh No Yes

There is a perfect negative correlation (-1)1 between the two variables in the data
set. There is no way for a statistician to disprove the notion that rocks prevent tiger
attacks using this data set. However, if more information was collected on tiger attacks
(providing a bigger data set), we would likely see that there is no relationship between
rocks and tiger attacks at all!

Not only are sample sizes typically too small, anecdotal evidence may only exist
because the personal experiences are unusual or memorable in some way. In this chapter
we will talk about random sampling from a population. Anecdotes might just contain
the most extreme cases in a population, and so might not be very representative of the
population itself.

3.1.2 Experimental data

Experimental data is often considered the best kind of data for estimating causal effects.
In an experiment, the researcher can randomly assign individuals to a treatment group
or a control group. Random assignment is an extremely powerful tool in statistical
analyses of causation.

“Treatment” can be defined quite broadly. Traditionally it meant treatment with a
drug or medical procedure, but the concept has expanded to include education, labour
training programs, health insurance, or anything which my effect an outcome of interest.

1Assigning a numerical value for “Yes”, and a different numerical value for “No” (1 and 0 are natural
choices) would give a correlation of -1 between the variables rock and tiger.attack. We will talk
about correlation in Section 5.10.

https://www.youtube.com/watch?v=xSVqLHghLpw
https://youtu.be/RbKxfdn3GWE?t=36
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The treatment group are those individuals that receive the “treatment”; the control
group does not receive treatment (in a medical study they might receive a “placebo”).
The effect of the treatment can sometimes be determined by comparing the outcomes
of the two groups. An outcome is something particular that is thought to be influenced
by the treatment. See Table 3.2 for examples of treatments and outcomes.

Table 3.2: Examples of treatments and outcomes.

Treatment Outcome

LIPITOR cholesterol levels
university education wages

carbon tax CO2 emissions
universal health care life expectancy
universal basic income unemployment rate

The outcomes in Table 3.2 could differ depending on the researcher. Rather than
wages, a criminologist might be interested in the effect of education (treatment) on
crime rates (outcome). Governments may wonder whether adopting universal health
care (treatment) might reduce health care costs (outcome). The labelling of things as
treatment or outcome is part of a framework that allows researchers to try to figure
out cause and effect.

Lurking variable. A lurking variable is an unobserved variable which influences both
the probability of an individual receiving treatment, and the outcome associated
with the treatment.

Randomly assigning individuals to treatment or control groups prevents individuals
from choosing whether they receive treatment or not. Random assignment is important
because the choice to get treated might affect the outcome. Sometimes this problem
is expressed in terms of a lurking variable. A lurking variable is unobserved and influ-
ences both the decision for an individual to seek treatment, and the outcome from the
treatment itself.

With random assignment, the lurking variables no longer have power to influence
the data that we observe. That is, other factors that influence the outcome (besides
the treatment that we are interested in), do not matter on average, in an experiment
with random assignment. Below we consider an example to try to solidify some of the
terminology we have used.

Example 3.1 How could we use an experiment to determine the value (in terms of
wages), of a university education? We could randomly select 10 individuals, and
then randomly choose 5 to receive a free university education (this is the treatment
group). The other 5 are not allowed to receive an education. 20 years later, we
measure the wages of the individuals (wage is the outcome). The experimental data
is displayed in the table below.
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name education wage (in thousands)

Raven university 101
Gary university 70
Roberto high school 59
Amanda university 144
Justin high school 135
Hadeel high school 126
Mudrika university 124
Dewarren high school 69
Jacob university 98
Melinda high school 80

One way to quantify the effect of the treatment is to calculate the sample aver-
age outcome between the treatment group (university) and the control group (high
school). We will talk about the sample average in depth in a later chapter, but you
should be able to calculate this difference now. The sample average wage for the
group with a university education is:

¯wageuniversity =
101 + 70 + 144 + 124 + 89

5
= 105.6

Similarly, the sample average wage for the group without a university education is:

¯wagehighschool =
59 + 135 + 126 + 69 + 80

5
= 93.8

Taking the difference between these two sample averages (105.6−93.8 = 11.8) might
lead us to conclude that one of the effects of an education is to increase wages by
$11,800 on average. Better yet, we might express this increase as a percentage
instead. That is, we estimate that wages increase by 11.8/93.8 = 12.6% due to a
university education.

Can you identify any problems with this experiment? The sample size is probably
too small for us to have much confidence in our result, and we would want to include
many more individuals in this experiment (but we wanted to fit the table on the
page). More importantly, conducting this experiment would be very expensive,
and would be unethical. We would have to pay for the university education of each
member in the treatment group. Each member in the control group would be denied
an education, the access to which is a human right. This experiment, like many
that would be useful in economics, is too expensive to perform and would not pass
an ethics board!

3.1.3 Observational data

Although less useful than experimental data, observational data is much more com-
monly used in economic analysis. The experiments we would need to conduct in eco-
nomics are often too expensive, and are unethical (see the example in the previous
section).
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Observational data. Observational data is data that is collected by observing and
recording the universe as it unfolds, without intervening.

Observational data is recorded without being able to apply any control over whether
the individuals in the data are in the treatment group, or in the control group. We
simply observe the choices that people make, and the outcomes that occur. There is
little to no influence over the behaviour or actions of the individuals in the data set.
There is no random assignment in observational data2.

The lack of random assignment and control, means that individuals have some de-
gree of choice in whether or not they are in the treatment or control group. This can
have very serious consequences when trying to make causal statements using observa-
tional data. As an example, we will reconsider the link between education and wage,
but in a setting where the individuals in the data have chosen to obtain an education.

Example 3.2 Suppose now that there is no experiment available to determine the
effect of education on wages. Instead, we merely observe an individual’s wage and
educational attainment. We are powerless over which individuals obtain an ed-
ucation. Consider that the same individuals who were enrolled in the previous
experiment were instead allowed to live their lives free of interference. Some chose
to get a university education, some did not.

name education wage (in thousands)

Raven university 101
Gary high school 62
Roberto high school 59
Amanda university 144
Justin university 152
Hadeel university 142
Mudrika university 124
Dewarren high school 69
Jacob high school 87
Melinda high school 80

Justin and Hadeel decided to obtain an education (opposite to the experiment
where they were assigned to have no education). Gary and Jacob decided not to
obtain an education (in the experiment they were assigned to receive an education).
Why did their decisions contrast to what happened in the experiment?

Labour economics has several explanations as to why the individual decisions
to obtain an education might be linked to the anticipated or predicted wage. For
the purposes of this example, let’s assume a simple reason. Suppose that the true
increase in wage due to an education is 12.6% (this is what was revealed by the
experiment). Having some knowledge of this, individuals with a higher earning
potential will be more attracted to a university education. They have more to gain.

Let’s compare the sample averages between the two groups again. We get:

2Natural experiments are one exception.
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¯wageuniversity =
101 + 144 + 152 + 142 + 124

5
= 132.6

and

¯wagehighschool =
62 + 59 + 69 + 87 + 80

5
= 71.4

so that the average increase in wages is 132.6− 71.4/71.4 = 85.7%! This is much more
than what was indicated using the experimental data (12.6%). What happened
here? Those individuals who had more to gain (a higher base salary) chose to get
an education.

In this example, education is not just increasing wages, it is indicating the
earning potential (base salary) of individuals. This makes it impossible to attribute
the increase in wages between the two groups to the difference in education. Here,
the lurking variable is an individuals perceived benefit of obtaining an education
(their self assessed earning potential).

Endogeneity. In economics, endogeneity can refer to a situation where an individual’s
anticipation of an outcome influences the choices that they make. It can also refer to
a situation where there is some factor (possibly unobserved) driving various decisions.

Observational data, such as in the above example, often involve something economists
refer to as endogeneity. A large part of econometrics is dedicated to being able to make
causal statements (such as how much education causes an increase in wages) in the face
of “threats” of endogeneity. In this textbook we will not tackle such issues, but we will
be working primarily with observational data. We need to be aware of the limitations
of observational data, especially when attempting to infer causality.

3.1.4 Available data

Available data is data that has already been recorded for some specific or general
purpose. Most of the data that economists use is already available. When trying to
answer a specific research question, it is rare to have the opportunity to collect and
create a new data set. Researchers typically start by looking for observational (or
sometimes experimental) data that already exists.

For example, Statistics Canada collects and distributes demographic and economic
data, which is used extensively in economics research and policy analysis. Most coun-
tries have similar agencies, for example the United States Census Bureau. For labour
related issues, such as determining the effect of education on wages (see the previous
two examples), a popular source of available data in the U.S. is the Current Population
Survey. The World Bank provides development data for countries. These are a few
examples; there are thousands of data sets available free and online.

3.2 Populations and Samples

Most data is collected by sampling from a population. A sample is in contrast to a
census. In a census, all individuals in the population are contacted. In a sample, only

https://www.statcan.gc.ca/eng/start
https://www.census.gov/data.html
https://www.census.gov/programs-surveys/cps.html
https://www.census.gov/programs-surveys/cps.html
https://data.worldbank.org/
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a portion of the population is contacted. The main reason for using a sample is that it
is usually too costly (or it is impossible) to record information on an entire population.

Every 5 years, the Canadian Census of Population attempts to contact every house-
hold in Canada, costing more than half a billion dollars. While census data is important,
most economics researchers have a much smaller budget, and so must rely on a sample.
In addition, a census may require too much time to collect, and may be less accurate
than a carefully collected sample.

3.2.1 Population

Population. The population contains every member of a group of interest.

A population contains all cases, units, or members that we are interested in. In
economics a “member” or a “case” is usually an individual, a firm, or a country. The
terminology case/unit/member just refers to a single component of the population.

If we are interested in the effect of education on wage, the population consists of
every working individual, and a case refers to each individual. If we are comparing GDP
between countries then the population consists of all countries in the world, and each
case/unit/member is a separate country. If we are describing increasing food prices in
Manitoba, then the population might be every grocery store in the province. In the
following discussion, we will often refer to a “member” or a “case” as an “individual”,
but the discussions are valid whether we are talking about individuals, businesses,
schools, institutions, countries, etc.

3.2.2 Sample

Sample. A sample collects data on a subset of members from the population.

A sample is simply a subset of the population. It usually consists of far fewer cases
or members than the entire population. Information in a sample is meant to reflect the
properties and characteristics of the population of interest. The sample contains those
members of the population that are actually examined, and from which the data set
is created. A sample is in contrast to a census, where there is an attempt to contact
every member of the population.

Census. In a census, there is an attempt to contact and record data on every member
of a population.

In most situations in economics, a sample, not a census, is used to conduct quanti-
tative analysis3.

3.3 Sampling bias

The way in which the sample data is collected is very important. A bad sample, one
that does not represent the population of interest, leads to bad results. The sample is
only useful in describing the population if it is a fair and unbiased representation of the
population. Bad sample data can occur for several reasons, some of which are defined
below.

3When comparing economic indicators such as GDP, usually the entire population (all countries) are
used.

https://www12.statcan.gc.ca/census-recensement/2021/ref/98-26-0001/2020001/010-eng.cfm
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Sample biases.

� sample selection bias - when characteristics of the members of the sample do
not represent the characteristics of the members of the population.

� non-response bias - when individuals, who have something in common with
each other, choose not to respond to a survey or poll.

� misreporting - when individuals report inaccurate information.

A common and highly recommended way of constructing a sample is by randomly
selecting members from the population. Random selection prevents links and common-
alities between those that are sampled. Random sampling can help to prevent sample
selection bias.

Survey / Poll. A survey or a poll provides a sample of data by asking people ques-
tions.

Surveys, also called polls, are used for many purposes and are an important source
of data. Although it is usually better to observe information about the individuals
in the sample directly, rather than ask those individuals to report that information,
surveys/polls are often the only option to collect data. For example, we might collect
data on individual’s income either by asking them how much they make (poll/survey),
or by observing their pay cheques from their employers. Polls and surveys suffer from
the possibility of non-response and misreporting. You might anticipate that when a
person is asked “how much do you make?”, they may refuse to answer, or lie.

In this section, we will further explore some ways in which samples can be collected,
and how the problems of sample selection bias, non-response bias, and misreporting
can arise.

3.3.1 Sample selection bias

Suppose that we want to know how Manitobans are going to vote in the next election.
We go outside the classroom and ask the first 30 people how they are going to vote.
Only 6 of them say they will vote conservative. Should we predict that the next
government will not be conservative? Are these 30 individuals a fair representation of
the voting population? Probably not. Professors in social science overwhelming vote on
the left[langbert2016], and this tendency likely extends to students. While collecting
this sample might be convenient for us, a university campus is not a subset that fairly
reflects the political views of the larger population. Inferences drawn from university
campus samples may not be correct and susceptible to sample selection bias.

Example 3.3 An infamous example of the failure of sampling is that of the Literary
Digest poll of 1936. Some 10 million questionnaire cards were mailed out, 2.4
million of which were returned. Based on the data in the returned questionnaires
the Literary Digest mistakenly predicted that Landon (Republican), not Roosevelt,
would win the presidential election. Many academics have since held that the poll
failed so miserably due to the Digest selecting it’s sample from telephone books and
car registries [lusinchi2012], which contained more affluent individuals (those that
could afford a telephone and a car), and who tended to vote Republican.

Voluntary response sampling and on-line surveys are also prone to sample selection
bias. Who are the type of people who would answer an on-line survey? Likely it is
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those individuals most passionate, and holding extreme views, that are willing to take
the time and effort to voluntarily provide information.

3.3.2 Non-response bias

Non-response bias can also lead to a sample failing to fairly reflect the population.
If some people do not respond to the poll or survey, that is fine. But if there is
an underlying reason for non-response, that is also linked to the answers that people
provide, then the results inferred from the sample will be biased.

Example 3.4 In 2016, polls predicted that Hillary Clinton would likely win the pres-
idential election, putting her probability of winning around 90%[kennedy2018].
How did the polls get it so wrong? One theory is non-response bias. The sample
was biased in the sense that Trump supporters simply refused to respond. This the-
ory is backed by findings that individuals with lower education, and anti-government
views, are less likely to respond to surveys.

Example 3.5 The view that the Literary Digest disproportionately sampled Republi-
can voters (see Example 3.3) has been challenged[lusinchi2012]. Non-response bias
is an alternate suspected culprit. 1⁄3 of Landon’s supporters answered the survey,
compared to only 1⁄5 of Roosevelt supporters. Most of the 7.6 million unanswered
surveys were from Democrats!

3.3.3 Misreporting

With any survey, misreporting is a concern. Misreporting is when a survey or poll
respondent does not provide accurate information. The reasons for this can be many.
For example, the “Shy Trump Hypothesis” supposes that the 2016 polls failed due
to Trump supporters feeling that their views were unaccepted by society. Individuals
may be too embarrassed to report truthfully, may be worried about social stigma, may
not understand the questions, or may not recall information accurately. If there is
systematic misreporting (in the sense that there is a pattern or a commonality among
the people who report), then inferences drawn from such surveys can be biased.

Example 3.6 The Current Population Survey (CPS) is an important survey that is
used in a variety of quantitative analyses, and that has hundreds of thousands of
citations in economics research.

The CPS asks respondents questions on enrolment in food stamp programs. This
information is important for understanding poverty, and ways to mitigate poverty.
A study investigating misreporting in CPS data has found that approximately 50%
of households on food stamps do not report it on the CPS[meyer2020], and that
theories such as stigma may explain the misreporting. When individuals feel that
they may be judged, they may not answer survey questions accurately.

3.4 Simple random samples

Simple random sample. A simple random sample is collected by randomly selecting
members from the population.

In order to avoid sample selection bias, simple random samples are often recom-

https://www.census.gov/programs-surveys/cps.html
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mended. A simple random sample is when members of the population of interest are
selected at random. Each member has an equal chance of being selected. Imagine
a bowl containing pieces of paper with everyone in the population’s name written on.
Pulling out n pieces of paper from the bowl, and contacting those selected, would create
a simplae random sample of size n.

Simple random sampling is in contrast to convenience sampling, voluntary sam-
pling, and on-line polls. In a simple random sample, information and opinions will
not be skewed by those individuals who are the most motivated or the most willing to
participate in a study. There will be no underlying link between the members in the
sample.

There are more complicated versions of random sampling. For example, a stratified
random sample selects members from subgroups of a population. In this way, members
with certain characteristics have a higher probability of being sampled.

Example 3.7 — Stratified sample. Suppose that we want the portion of ethnicities in
our sample to perfectly reflect the portion of ethnicities in the population. Suppose
that we know that the population contains only 3% of a certain ethnicity. If we
take a sample of 100 from the population, what is the probability that no one in
the sample is from that ethnicity? It turns out to be approximately 5%.a We might
completely miss this group! Instead of pure random sampling, we could randomly
select a certain number of individuals from each ethnicity, where the number that we
select is based on their proportions in the population. That is, we could randomly
select exactly 3 people (if our sample size is going to be 100) from the ethnicity that
comprises 3% of the population.

aAssuming that the population is very large, the probability of not drawing the certain ethnic
group is maintained at 97% for each draw, and the probability of 0 draws is 0.97100 = 0.048.

3.5 Data ethics

Although experiments are fairly rare in economics, it is worth noting the ethics behind
designing experiments. We have already seen one example where an economics exper-
iment would be unethical (wages and education), but who determines what is ethical
or not? In most cases, this is determined by a review board. Most experiments are
subject to ethical approval before they can proceed. In order to secure approval, most
experiments will require informed consent (the participants in the experiment must
understand the consequences of being experimented on and agree to be subjected to
an experiment). In addition, most experiments must preserve confidentiality, so that
although the results of the experiment may be made public, the public cannot obtain
sensitive information about the participants.



4. Describing Data

In this chapter, we will begin to describe the variables in our data set. We start by
explaining the structure of a data set. Each row in a data set corresponds to a differ-
ent observation, and each column is a different variable. We then discuss some basic
characteristics of the variables, such as whether they are quantitative or categorical,
and whether they are continuous or discrete.

Such considerations not only help us understand our data set, but also inform the
type of graph that we should use to visualize the data. We will learn about the following
ways to graph a single variable in this chapter:

� pie charts
� bar graphs
� histograms
� time plots

Creating graphics from data is a powerful way to learn about the distribution of a
variable. Graphics are also used to convey information, to make a point, or to try to
convince the reader of some hypothesis. In this chapter we will match the appropriate
type of graph to the different types of variables, and learn how to create those graphs
in R.

By graphing a quantitative variable in a histogram, we can learn about the shape,
location, and spread of its distribution. These are important considerations that help
to characterize the population that we are studying. Graphs help us look for patterns
and exceptions to the pattern.

Finally, we will discuss the scatterplot. A scatterplot graphs two variables at once
(sometimes more!), and is a powerful way to begin to describe the relationship between
two variables that may be related to each other. We can use a scatterplot to describe
the direction, form, and strength of a relationship, whether the relationship is linear or
nonlinear, and to see if a relationship even exists!
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4.1 How data is arranged

A data set is typically arranged with each observation taking a different row, and
each variable taking a different column. Each row represents a single observational
unit. Each column is a different type of information on the observations. In Figure
4.1, the observations are on people (each row represents a different person), and the
variables are age, gender, income, etc. That is, each column contains a different type
of information about the people in the sample.

Figure 4.1: Data set on Mars colonists.

The number of observations, or the number of rows in the data set, is called the
sample size and is denoted n. It is always better to have a larger n!

Sample size. The sample size is the number of observations (rows) in the data set,
and is denoted by n.

Example 4.1 — Data example: Mars has been colonized. At several points in the
book we will use data on Mars colonists (see Figure 4.1 for a few rows and columns
of the data set). Mars has been colonized, with 720,720 individuals thriving on
Mars City. Due to the importance that Mars City represents for the survival of
humanity, detailed information on the inhabitants is available. People who want
to live on Mars are subjected to intense scrutiny and have agreed to allow detailed
information about themselves to be available. The data is of course fake (randomly
generated), but has variables that mimic many real data sets, such as the Current
Population Survey.

4.2 Types of observations

Observations may also be called cases, units of analysis, or experimental units (if the
data were obtained by an experiment). The type of observation depends on the nature
of the data. In general data describes people, places, things, or situations. So, each
observation could be a different person (as we saw in Figure 4.1), or a different country,
province, firm, university, or even a moment in time! In the example below, we see a

https://www.census.gov/programs-surveys/cps.html
https://www.census.gov/programs-surveys/cps.html


4.3 Types of variables 30

data set where each observation is a different country.

Figure 4.2: Data from the 2019 World Happiness report. Each observation (row) is a
different country. The variables (columns) are the average Happiness Score, and GDP
per capita. The name of the first column reveals that we have observations on countries,
rather than individuals, provinces, businesses etc.

Example 4.2 — Data example: 2019 World Happiness Report. We will use the World
Happiness report for several examples throughout the book. The First World Happi-
ness report was prepared in 2013, in support of a United Nations High-Level Meeting
on “Well-Being and Happiness: Defining a New Economic Paradigm.” The World
Happiness Reports are funded and supported by many individuals and institutions,
and based on a wide variety of data. The most important source of data, however,
is the Gallup World Poll question of life evaluations. The English wording is:

“Please imagine a ladder, with steps numbered from 0 at the bottom to 10 at
the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?”

The responses can be averaged so that each country is ranked (see Figure 4.2 for
the happiest countries in the world!) By including other variables in the data set
for each country, researchers have an opportunity to investigate what factors lead
to differences in happiness between countries (differences such as GDP per capita).
In this data set, GDP per capita is in terms of Purchasing Power Parity adjusted
to constant 2011 international dollars.

4.3 Types of variables

In order to know what type of graph or statistical technique should be used, it is helpful
to categorize variables into different types. For example, we would not display the
information on marital status in the same type of graph as we would an individual’s
income, or their education level. Similarly, some statistics formulas cannot be used
with certain types of variables. It is important to be able to classify a variable for these
reasons.

In the first few rows and columns of the data set on the Martian colonists (see
Figure 4.1), we see several different types of variables. The first column name tells you
that the type of observation is an individual. The name of the individual allows you to
locate a specific row. A row number would do the job just as well. That is, the name of
the person is not particularly useful and is not a variable; it just serves as an identifier.

https://worldhappiness.report/
https://worldhappiness.report/
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The variable gender is what we call a categorical or qualitative variable. Similarly,
ethnicity and marital.status are qualitative variables. In contrast, age and income

are quantitative variables, and we might go further to say that age is a discrete variable
whereas income is a continuous variable. See Figure 4.3 for an overview of how we will
classify variables in this section.

Figure 4.3: Types of variables.

4.3.1 Qualitative / categorical variables

Qualitative variable. A variable that describes a quality of the observation, and does
not have natural numerical meaning.

A qualitative variable is one that takes on two or more possible qualitative values
(qualitative variables are also called categorical variables). When we say qualitative we
mean something that is not necessarily numerical, but that has a quality or a property.
For example, red is a quality, three is a quantity. The colour of someone’s eyes or hair
could be a quality that fits into one of several categories, whereas their height or weight
could be quantified. We could say that one person is twice as tall as another, but we
can’t make the same kind of algebraic comparisons for eye colour.

Some typical examples of qualitative variables encountered in the social sciences
are:

� gender
� treatment
� ethnicity
� province or territory of residence
� marital status
� political affiliation
� exchange rate regime

For most of the examples above, the categorical variable can take on one of several
different possible values. A key feature of a categorical variable is that its categories
must be exhaustive. That is, each observation must be able to fit in one of the categories.
A simple way to ensure this is to have an “other” category that acts as a catch-all for
observations that are not easily categorized.

Ethnicity is a categorical variable reported in many data sets that collect infor-
mation at the individual level. “Ethnicity” as a categorical variable is problematic in
terms of developing appropriate concepts, avoiding ambiguity, and avoiding offensive
constructs and terminology (for example Eskimo in reference to Inuit). However, the
international meeting on the Challenges of Measuring an Ethnic World (Ottawa, 1992)
noted that ethnicity is a fundamental factor of human life inherent in human experi-
ence, and that data on ethnicity is in high demand by a diverse audience. Statistics

https://www.statcan.gc.ca/eng/concepts/definitions/previous/ethnicity2
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Figure 4.4: Statistics Canada ethnic categories.

Canada has a standard that classifies individuals in one of eight categories: See Figure
4.4.

The number of categories that a categorical variable can take is often up to the
discretion of the researcher, and can vary. For example, countries must decide how
to manage their currency on the foreign exchange market. A categorical variable
could be used to describe which regime (currency exchange system) each country fol-
lows. There are three basic types, so for example each country could have a vari-
able called exchange.regime which takes on one of three values: floating.exchange,
fixed.exchange and pegged.float.exchange. However, the IMF classifies countries
in 1 of 8 exchange rate regime categories, so the exchange.regime variable could in-
stead take on one of eight possible values.

Finally, why are categorical variables used? They are important for predicting,
modelling, and understanding the differences between groups. Is a drug effective? We
can compare the outcomes between the treated and placebo/control groups. The cate-
gorical variable will identify which individuals belong to which group. Do women earn
less than men? To be able to investigate, and perhaps ultimately solve discrimination
by gender or race, we first need a way to identify differences between groups; this task
is greatly aided by categorical variables.

Dummy variables

Gender was traditionally considered a binary or dummy variable in the social sciences.
A dummy variable is a special kind of categorical variable that can take on one of
only two values (binary refers to a number system with a base of 2). Historically, a
gender categorical variable could take on the values either “male” or “female”; each
person was forced to belong to one of the two categories. With the more common
understanding that gender is a spectrum rather than a binary, more contemporary
statistical analyses try to recognize broader categories, such as non-binary, trans, and
possibly dozens others. For example, Statistics Canada has slightly broadened its
sex and gender classifications. A person’s sex can be “male”, “female” or “intersex”,
and a person can be “Cisgender”, “Transgender”, “Male gender”, “Female gender” or
“Gender diverse”. With more than two categories, gender is no longer the quintessential
“dummy” variable in the social sciences.

Dummy variable. A dummy variable, also called a binary variable, is a categorical
variable that takes on one of two values.

Better examples of dummy variables are in “yes” or “no” situations. For example,

https://www23.statcan.gc.ca/imdb/p3VD.pl?Function=getVD&TVD=402936
https://www.imf.org/external/np/mfd/er/2004/eng/0604.htm
https://www.statcan.gc.ca/eng/concepts/definitions/gender-sex-variables
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did the subject receive the “treatment”? The treatment variable could take on values
yes or no. Numbers are typically assigned to these dummy variables: 1 indicates “yes”
and 0 indicates “no”. Don’t be fooled by the numerical values! The numbers don’t
actually mean anything, other than to provide a key to the categories.

Other examples of dummy variables in economics include whether a firm is “domes-
tic” or “foreign”, whether an individual has participated in a social program or not,
whether a person has ever received social assistance, whether an individual or country
has ever defaulted on a loan, whether an individual has ever committed a crime, etc.

Ordinal variables

Ordinal variables rank observations (order them) relative to one another. For example,
the position that an athlete places in a race (1st for gold, 2nd for silver, etc.) is
an ordinal variable. The ranking of countries by happiness (see Figure 4.2) is an
ordinal variable. Ordinal variables do not contain as much information as quantitative
variables, and are not considered as useful. The magnitudes of ordinal variables don’t
have much meaning. Did the athlete who received a silver medal (position = 2) take
twice as long to complete the race as the athlete that received gold (position = 1)?
Ordinal variables provide a type of qualitative information.

Ordinal variable. An ordinal variable ranks each observation among all the observa-
tions.

Ordinal variables usually occur due to the ordering of some other latent or hidden
variable. In the case of the athletes, the time to complete the race is the underlying
variable that generates the ordinal position variable. It would always be better to
have the underlying variable time instead. The ordinal variable does not contain as
much information. Similarly, we would rather know the actual Happiness.score of
each country rather than their happiness rank. Ordinal variables are used when no
such quantitative alternative exists.

4.3.2 Quantitative variables

Usually, when we think of a variable, we think of it being able to take on different
numbers, not different categories. In this sense, quantitative variables may seem more
natural or comfortable than the qualitative variables discussed above.

Quantitative variable. A quantitative variable takes on numerical values and mea-
sures the magnitude of something.

A quantitative variable takes on different numbers, and the magnitude of the vari-
able is important (whether the number is small or large). Depending on the nature
of the variable, it may have a certain domain. A domain is all the possible places the
variable can occur or “live”. For example, income cannot be below 0, so an income
variable might be confined to the set of positive real numbers. A variable measuring
temperature on Earth might realistically be confined between -100 and 70 degrees Cel-
sius. In some situations, the domain might be the entire real line, so that the variable
might take on any value between negative and positive infinity!

In Figure 4.1 we see that age and income are quantitative variables. Yet, there is
something different in the nature of these two variables. In fact, quantitative variables
can be divided into two types: discrete and continuous. In the Mars colonist data
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example, age is a discrete variable,1 and income is a continuous variable2.

Discrete variables

A discrete variable can take on a countable number of values. For example, we can
count the number of values that the age variable can take. Some other examples of
where we can count the numbers of things:

� Times a customer might visit a store.
� Students in an Econ 2040 class.
� Children in a family.
� Years of education.
� Individuals in Canada.

The key property of a discrete variable is that we can count all the possibilities3. By
contrast, continuous variables can take on an uncountable number of values!

Discrete variable. A discrete variable is a type of quantitative variable. It takes on a
countable number of values, which are usually non-negative integers: (0, 1, 2, 3, . . . ).

Continuous variables

A continuous variable is obtained by measuring, and can take any value over its range.
Even if the range is not infinity, a continuous variable has an uncountable number of
possibilities! For example, the possible heights of an individual are uncountable, even
though the possibilities are between 0m and 3m, for example. The person could be
1.63m tall. What about 1.63001m tall? Or 1.630000001m tall? We could keep adding
zeros. The possibilities are uncountably infinite. In Figure 4.2, the Happiness.score

and Log.GDP.per.capita variables are continuous. They can take on any values in a
range, but we can’t count all the possible values.

The distinction between discrete and continuous variables leads to very important
mathematical considerations in statistical modelling. For example, where a discrete
variable might be added up, a continuous variable would be integrated. Similarly, we
could find the derivative for a function of a continuous variable, but we can’t take the
derivative of a function of a discrete variable. We do not get into these topics in this
book, but rather focus on the consequences that these differences have for the way in
which we graph the variable.

4.4 Graphing categorical data

Categorical data may be graphed using a pie chart or bar plot. To construct these
graphs, the number of observations in each category must be calculated. For a pie
chart, these numbers are converted into percentages by dividing by the sample size
(and multiplying by 100). The entire pie represents 100%, with the size of each slice
representing the percentage of observations in each category.

1age is a discrete variable because it is measured in years. Measuring it in finer units (down to the
second or millisecond) would make it essentially continuous.

2It can be argued that income is not truly a continuous variable, since salaries are for example paid
down to the cent, and only have a maximum number of decimal places of two. Thus, there are a
countable number of different incomes that each person can have. However, due to all measurements
of any continuous variable being subject to a certain degree of human accuracy, the same argument
could be made for many “continuous” variables.

3Some variables are countably infinite, meaning that even if they can take on an infinite number of
possibilities, we could list them all.
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Figure 4.5: Pie chart (left) and bar plot (right) of marital status for a sample of Mars
colonists.

Similar to a pie chart is the bar plot. A bar plot simply uses the number of obser-
vation in a category for the height of a bar. The bar plot has the added benefit that
it conveys the actual number of observations in each category. For example, in Figure
4.5 we can see that approximately 100 individuals in the sample are divorced.

Example 4.3 — Pie chart for marital status in Mars city. Let’s recreate Figure 4.5.
We’ll make a pie chart and bar plot for the marital status of a sample of 1000 Mars
colonists. First, load the data:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

Next, look at a table of the marital.status variable:

table(mars$marital.status)

divorced married single widowed

111 534 344 11

To make the pie chart, we can use:

pie(table(mars$marital.status))

and to make the bar chart, we use:

barplot(table(mars$marital.status))

Note that you can “export” the images that you create (that’s how we got them
into this book!).

Typically, a pie chart or a bar plot is used, not both. In fact, it is questionable if
these graphs are even needed for categorical data. The table below, upon which the
graphs are based, takes up very little space and conveys a lot of information:

marital status divorced married single widowed

number of observations 111 534 344 11
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4.5 Graphing quantitative data

Commonly, histograms are used to graph continuous variables, and bar plots or his-
tograms are used for discrete variables. These graphs provide a visual representation
of the distribution of the variable. A distribution describes the values (the range) that
the variable can take, and conveys how often (or the probability) the variable takes on
certain values.

Later we will talk about the Normal distribution (and others), but for now let’s
develop terminology that allows us to describe what we see when viewing a graphical
representation of a distribution.

4.5.1 Histograms

Histogram. A common graphic for portraying the distribution of a continuous vari-
able. A histogram “bins” the variable, and draws the height of each bin by using the
number of observations in that bin.

A histogram is created by breaking up the range of a variable into several “bins”,
counting the number of observations that fall into each bin, and then graphing the
heights of the bins. This gives us a visual representation of how often the variable
takes on ranges of values. The histogram tells us if there are extreme values, if the
variable is spread out or tightly packed, and which values the variable tends to take.
Example 4.4 illustrates how a histogram is produced.

Example 4.4 — Histogram of IQ scores. Here is a sample of 84 different IQ scores:

112 108 126 81 133 106 76 86 101 100 66 111 92 103
108 123 110 117 88 94 106 101 85 81 97 111 105 83
89 89 72 94 100 114 125 101 128 101 121 122 101 77
99 97 131 103 108 125 106 81 91 127 97 95 109 115
100 86 114 117 93 114 68 75 126 112 93 129 94 76
103 83 107 74 108 101 103 112 90 104 117 105 96 97

To create a histogram, the computer will “bin” this data, count how many scores
fall into each bin, and then use the number of values in the bin to graph its height.
For bins of size 10, we could have:

Bin Number of scores

60 ≤ IQ < 70 2
70 ≤ IQ < 80 6
80 ≤ IQ < 90 12
90 ≤ IQ < 100 16
100 ≤ IQ < 110 24
110 ≤ IQ < 120 12
120 ≤ IQ < 130 10
130 ≤ IQ < 140 2

Download the IQ scores in R:

IQ <- read.csv("http://rtgodwin.com/data/IQ.csv")

Create the histogram (with a title and label on the x-axis):

hist(IQ$scores, main = "Histogram of IQ scores", xlab = "score")
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4.5.2 Describing distributions

Distribution. A distribution describes all the possible values that a random variable
can take, assigning probability to all the possibilities.

A distribution defines the probabilities and possibilities of a random variable. It can
sometimes be represented in a graph like in Figure 4.6 (except we would need numbers
on the x- and y-axis). Some statisticians think that the data we observe is actually
created by distributions. This would mean that it is crucially important to try to find
the right distribution to describe a variable. Even if distributions do not generate data
but merely help to describe randomness in the real world, finding the right distribution
is an important task.

Figure 4.6: A bell curve.

There are hundreds of different statistical distributions. In this book we will limit
ourselves to only a few. We will, however, develop terminology that is helpful in select-
ing the right distribution. For example, if a distribution is spread out or condensed, if it
has skew or is multi-peaked, then the bell curve of Figure 4.6 would not be appropriate.

Shape, location, and spread

How would you describe the distribution for IQ scores (as it is portrayed by the his-
togram) from Example 4.4? Use words like shape, location, and spread.

� Shape: IQ scores appear to have a single peak, are not skewed, and follow a
“bell” like shape.

� Location: The distribution is located at around 100. This appears to be the
centre of the distribution (around where most values are located).
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� Spread: The distribution is not particularly spread out, nor is it tightly packed.
It matches the bell-curve nicely.

The “bell” curve that we mention is in reference to the important Normal distribu-
tion, which we discuss in a later chapter. It is a famous and important shape that you
should already be familiar with: see Figure 4.6.

4.5.3 Skew

A non-symmetrical distribution is said to be skewed if it looks as if one of the “tails”
of the curve has been stretched out. That is, a distribution is skewed if one of the tails
is longer than the other. Skew is a descriptor that helps to characterize a distribution.
Figure 4.7 illustrates two skewed distributions.4

Skew. When one tail of the distribution is stretched out.

Example 4.5 — Left skew: age at death. The distribution of peoples ages at the time
of their death is an example of left skew. Using Life Tables from Statistics Canada,
download constructed data on the age-at-death of 99,976 individuals:

data <- read.csv("http://rtgodwin.com/data/age-at-death.csv")

Create a histogram, give it a title, and label the x-axis:

hist(data$death.age, main = "Age at death", xlab = "death age")

What do you see? This is a left skewed distribution. It peaks at age 85-90, with a
bit of an extra “spike” at around age 0 (reflecting infant mortality).

4The left skew distribution is from the “Skew Normal distribution” and the right skew is from the
“Log-Normal distribution”.

https://www150.statcan.gc.ca/n1/pub/84-537-x/84-537-x2020001-eng.htm
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Figure 4.7: Skewed distributions.

Example 4.6 — Right skew: income. The incomes of individuals typically follow a
right skewed distribution. For example, the majority of workers might be within
the $30,000 to $100,000 range, with a small portion of workers making very large
incomes. Let’s draw a histogram of incomes from the sample of 1,000 employed
Mars colonists:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

hist(mars$income, breaks = 16,

main = "Histogram of Mars incomes", xlab = "income")

The option breaks = 16 was used to control the number of bins in the histogram
(try removing it and see what happens). We see that incomes on Mars appear to
follow a right skewed distribution, with the majority making under $100,000, and
with some very large incomes in the sample.

4.5.4 Multi-peaked distributions

All of the distributions we have seen so far have been single-peaked (think of the top
of a mountain). This peak is the mode of the distribution (we will discuss mode later).
Sometimes, however, we see distributions that are multi-peaked. These distributions
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can arise for a variety of reasons, one of which being when two distributions are mixed
together to create a single random variable. Figure 4.8 shows a multi-peaked (bi-modal)
distribution.

For example, the percentage grades in university courses are often bi-modal (have
two peaks): one peak around “C” grades and another peak around “B+”. The number
of years of education of individuals is often multi-peaked as well: for example one peak
at 12 years (high school) and another peak at 16 (university degree).

Figure 4.8: A multi-peaked distribution. 3/4 of the values come from a bell curve located
at 20, the other 1/4 are located at 60.

Example 4.7 — A multi-peaked distribution for the number of years of education. We
will use the sample of 1000 employed Mars colonists. Sometimes when we graph
a discrete variable (see Section 4.3.2), we use a bar plot instead of a histogram.
Discrete variables do not necessarily have to be binned! For education, we can
count the number of people that have 8 years, that have 9 years,... there is no need
to create a “bin” in order to cover a range of values, and using a bar plot avoids
multiple integer values being binned together. Just like for the categorical data in
Figure 4.5, the height of each bar is equal to the number of people for each integer
value in the plot.

Download the Mars data, and create a bar plot for years of education:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

barplot(table(mars$years.education))
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We see that the distribution has at least two-peaks: one for a high school degree,
and one for a university degree. Note that barplots have spaces between the bars,
whereas histograms do not.

4.5.5 Outliers

An important reason to graph data, using histograms and bar plots (and later scatter
plots), is to detect the presence of outliers. Outliers are extreme values that differ
significantly from the other observations in the data. An outlier might be sampled by
chance, in which case the observation should usually remain in the data set.

Outlier. An extreme value that may indicate the presence of an error, in which case
the observation should be removed from the sample.

If the outlier is due to an error, then it should be removed or corrected. Such errors
may occur as the data is being measured or recorded. For example, an extra 0 might be
typed when recording income, a single weight might be recorded in kilograms instead
of pounds, or an economist may forget to convert Pesos to Dollars when examining
trade.

Another possible source for outliers is if an observation comes from a different
population. Remember that the sample is meant to represent the population. If we
are interested in the income of employed Martian colonists, then the sample should not
include a student, for example. Observing a small value for income might induce us to
examine the observation more carefully and perhaps discover that the observation is
indeed from the wrong population.

In Example 4.6 we see some outliers: some very high incomes in the right tail of
the distribution. We should do our best to examine these observations to see if we can
detect any data recording mistakes, or any indication that these observations do not
belong in the sample.

4.6 Time plots

A time-series is a single random variable that is measured repeatedly over time. A na-
tions GDP is constantly changing over time, we might measure it quarterly or yearly.
A households electricity consumption, CO2 emissions, the price of a stock, the temper-
ature in Winnipeg - these are all variables that could be recorded at different points
over time.

Graphing these variables, with time on the x-axis, is called a time plot. Time plots
can be useful to see how a variable evolves. Time plots can dramatically illustrate the
effect of a timely event on a random variable, or can illustrate how quickly something
is growing or declining.

Example 4.8 — Time plot of GDP. The data is from Statistics Canada[statscanGDP],
and contains GDP by year in millions of 2012 dollars:

gdp <- read.csv("http://rtgodwin.com/data/canada-gdp.csv")

plot(x = gdp$Year, y = gdp$GDP,

type = "l", xlab = "Year", ylab = "GDP")



4.6 Time plots 42

We used the plot function, and chose:

� the x-axis to be the year (x = gdp$Year)
� the y-axis to be GDP (y = gdp$GDP)
� lines instead of dots (type = "l")
� labels for the x- and y-axes (xlab = "Year", ylab = "GDP")

Notice how each option in the plot function is separated by a comma.

4.6.1 Logarithms in time plots

The logarithm is the inverse to the exponent. If a variable is growing exponentially
over time (for example), then taking the logarithm will undo the exponential growth
and make the variable’s relationship to time appear linear.

When a variable is said to grow in percentage terms, this implies exponential growth.
For example, suppose Mars GDP grows by 6% on average, per year. This means GDP
is growing exponentially. Starting at 11 billion in year 1, what is the expected GDP in
year 10? In year 40?

GDPyear=10 = 11× (1.06)10 = 19.7

GDPyear=40 = 11× (1.06)40 = 113.1

GDP is really accelerating! Notice in the formula that the year is an exponent, so
GDP is growing exponentially over time. If we take the logarithm of both sides of the
equation:

log(GDPyear=40) = log(11) + 40× log(1.06)

then log(GDP ) (to any base) is growing linearly over time! (The 40 no longer appears
as a “power”). This is extremely useful for graphing variables that grow exponentially5.
To see this, load some data on Mars GDP:

5It is also useful when trying to fit “straight line” models to non-linear relationships.
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marsGDP <- read.csv("http://rtgodwin.com/data/marsGDP.csv")

Create a time plot of GDP:

plot(marsGDP$time, marsGDP$GDP, type="l",

main = "Non-linear relationship between GDP and year",

xlab = "year", ylab = "GDP")

Figure 4.9: Mars GDP. It is difficult to locate the years in which recessions took place
without taking GDP in logs.

In the left pane of Figure 4.9, it is difficult to see the values of GDP at the beginning of
the time period. It looks like a smooth ride! This is because, by the end of the sample
(year 60), the values for GDP are very large, making the scale of the y-axis unhelpful
for seeing what is happening with GDP around year 10. Looking at the left pane of
Figure 4.9, it appears that there were two recessions at the end of the sample. Let’s
now put the log of GDP on the y-axis instead (right pane of Figure 4.9):

plot(marsGDP$time, log(marsGDP$GDP), type = "l",

main = "Linear relationship between log(GDP) and time",

xlab = "year", ylab = "log(GDP)")

After graphing the log of GDP, we see a linear relationship. This shows that GDP
is growing constantly over time. It also allows us to see that GDP at the beginning
of the time period was actually quite tumultuous! The two major recessions occurred
near the beginning of the time period, not the end. This was only visible after taking
logs.

To summarize, if a variable is growing exponentially (or is growing with a constant
percentage increase), then a common trick for visualizing such a variable is to take logs.

4.7 Scatter plots

A scatter plot can be used to visualize the relationship between two quantitative vari-
ables. Sometimes, one variable is suspected to cause or determine the other variable.
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By looking at a scatter plot we can comment on the strength, form, and direction of
the relationship between two variables.

In this section, we will:

� Define the dependent and explanatory variable.
� Describe the strength, form, and direction of a relationship when looking at a
scatter plot.

� Graph scatter plots in R, and use a categorical variable to add colour.

4.7.1 Explanatory and dependent variables

Of the two variables in the scatter plot, the explanatory variable is the one that is
suspected to cause or determine the dependent variable. Usually, the symbols “x” and
“y” are used when referring to these two variables.

Explanatory and dependent variables.

� x - the explanatory variable. It is not caused or determined by y. The ex-
planatory variable will appear on the x-axis of the scatter plot.

� y - the dependent variable, also called the response variable. It is thought to
be caused, or is at least explained, by the x variable. The dependent variable
appears on the y-axis of the scatter plot.

4.7.2 Points on a scatter plot

Figure 4.10: Happiness score and log GDP per capita.

Table 4.1: Happiness score and log GDP per capita.

Country Happiness score log GDP per capita

Finland 7.86 10.64
Turkey 5.19 10.15
Haiti 3.62 7.42

Each point on the scatter plot represents a single observation (a row in the data set,
see Section 4.2). The position on the plot is determined by the values of the dependent
and explanatory variables; these values provide the coordinates.
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Using the World Happiness report, Table 4.1 shows the average happiness score,
and log GDP per capita, for a few countries. When dealing with GDP, it is common to
use the log. Hypothesizing that GDP may cause happiness, we’ll call “Happiness score”
our dependent variable (the y variable) and “GDP per capita” our explanatory variable
(the x variable). The three observations in Table 4.1 are plotted in Figure 4.10. (Make
sure you can locate all the points!) By plotting all 127 countries in the data set, the
scatter plot will show us whether there is a relationship between the two variables, and
allow us to comment on the strength, form, and direction of the relationship.

Example 4.9 — Scatter plot for happiness and GDP per capita. Load the Happiness
data, and create the scatter plot:

mydata <- read.csv("http://rtgodwin.com/data/happiness.csv")

plot(x = mydata$Log.GDP.per.capita, y = mydata$Happiness.score,

xlab = "log GDP per capita", ylab = "Happiness score")

Describe what you see using terms like strength, form, and direction.

� There is a fairly strong relationship between the two variables (the data points
are quite tightly packed together, rather than being spread out).

� The form seems to be linear (rather than non-linear).
� There is a positive (direct) relationship between the two variables. When
one variable increases, so does the other (rather than a negative or indirect
relationship where the values move in opposite directions).

4.7.3 Scatter plots: types of relationships

From the scatter plot we can sometimes tell if:

� There is no relationship between the variables.
� The relationship is strong or weak.
� There is a positive or negative relationship.
� The relationship is linear or non-linear.
� There are outliers.

Figure 4.11 illustrates some of these possibilities.

https://worldhappiness.report/


4.7 Scatter plots 46

Figure 4.11: Types of relationships between variables.

4.7.4 Categorical variables in scatter plots

Recall that categorical variables compartmentalize each observation into one of a few
categories. Using colours to denote a category, the information contained in these
variables can be made visible in a scatter plot. Colour-coding (or symbol-coding) each
variable can reveal interesting patterns in the data.

Let’s create a scatter plot of per capita CO2 emissions, and GDP per capita (data
is from 2007). We will hypothesize that CO2 emissions is the dependent variable.
Load the data, and create the plot:

co2 <- read.csv("http://rtgodwin.com/data/co2.csv")

plot(co2$gdp.per.cap, co2$co2,

ylab = "CO2 emissions per capita", xlab = "GDP per capita")

Figure 4.12: Per capita CO2 emissions and GDP.
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A problem with Figure 4.12 is that there are some very large values for CO2 leading
to a scale for the graph that makes it difficult to see what is happening for the majority
of countries. As in Section 4.6.1, a trick for handling this is to take the logs of the
variables6. We can do this easily in R:

plot(log(co2$gdp.per.cap), log(co2$co2),

ylab = "log CO2 emissions per capita", xlab = "log GDP per capita")

Figure 4.13: Log per capita CO2 emissions and GDP.

In Figure 4.13, it is much easier to see that there is a strong and positive relationship
between per capita CO2 emissions and per capita GDP.

Figure 4.14: Log per capita CO2 emissions and GDP by continent.

Finally, let’s add colour to the scatter plot, by giving each point on the plot a
different colour based on the country’s continent. “Continent” is a qualitative variable
in the data set that places each country in 1 of 5 categories. From Figure 4.14 we
can now see that, compared to other countries with similar GDP, the Americas have
fewer CO2 emissions. These types of revelations occurs much more easily when colour

6Taking the logs of both variables leads to an approximate percentage change interpretation. That
is, a percentage increase in GDP will be associated with a percentage increase in CO2 emissions
(approximately).
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(or symbol) coding scatter plots using qualitative variables. The R code necessary for
adding colour to the scatter plot is provided in Example 4.10.

Example 4.10 — Colour coding CO2 emissions by continent. First, load the data:

co2 <- read.csv("http://rtgodwin.com/data/co2.csv")

The first few observations in the data look like:

Country Continent CO2 GDP per capita

Afghanistan Asia 0.085 974.58
Albania Europe 1.30 5937.03
Algeria Africa 3.19 6223.37
Angola Africa 1.20 4797.23

We need to create a colour variable that will control the colour of each data point.
We begin this by initializing a colour variable:

colour <- character()

and then assigning it values based on “continent”:

colour[co2$continent == "Africa"] <- "red"

colour[co2$continent == "Americas"] <- "green"

colour[co2$continent == "Asia"] <- "blue"

colour[co2$continent == "Europe"] <- "purple"

colour[co2$continent == "Oceania"] <- "orange"

Now we create the scatter plot, choosing the colour of each data point using the
variable we have created:

plot(log(co2$gdp.per.cap), log(co2$co2),

ylab = "log CO2 emissions per capita", xlab = "log GDP per capita",

col = colour, pch = 16)

and then add a legend to explain what the colours mean:

legend("topleft",

legend = unique(co2$continent),

col = unique(colour), pch = 16)

This reproduces Figure 4.14. There are much easier ways to accomplish colour
coding in R, for example by using the ggplot2 downloadable extension for R. This
example instead serves to illustrate the principle behind colour coding in a scatter
plot: linking each possible value in a qualitative variable to a unique colour.



5. Describing distributions with statistics

A statistic is a numerical value that is a function of the sample data. When we say
“function of the sample data,” we mean a formula, algorithm, set of rules, etc. that
uses the information in the data. Statistics can be used to describe a distribution.
Some of the visual descriptors from the previous chapter, such as location, spread, and
skew, can actually be measured using a numerical value.

Some statistics that we will cover in this chapter are:

� sample mean
� median
� interquartile range
� pth percentile
� sample variance and standard deviation
� sample correlation

5.1 Sample mean

The sample mean (also called the sample average, arithmetic average, or average) is
calculated by adding up all the values in the variable, and dividing by the sample size.
The sample size (the number of rows in the data set, or the number of values in a
variable) is usually denoted n.

If the variable y has values y = {6, 2, 5, 6, 1}, then the sample average is calculated
by:

ȳ =
6 + 2 + 5 + 6 + 1

5
= 4

We divided by 5 because there are 5 observations in the variable (n = 5). The sample
mean of the variable y is denoted ȳ.1 The sample mean of a variable called income (for
example) would be denoted ¯income.

1The symbol ȳ is pronounced “y bar”.
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The general formula for calculating the sample mean is:

ȳ =
1

n

n∑
i=1

yi (5.1)

where yi denotes the i
th observation, and where n denotes the sample size. The symbol

Σ tells you to add, starting at the 1st observation (i = 1) and ending at the last (n).
Equation 5.1 is a very common statistic, and should already be very familiar to you.

Example 5.1 — Sample mean in R. Load the variable y = {6, 2, 5, 6, 1} into R using:

y <- c(6, 2, 5, 6, 1)

Calculate the sample mean of y using the mean() function:

mean(y)

[1] 4

Example 5.2 — Sample mean in R. Load some Mars data:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

We can calculate the sample mean of “income” using the mean() function:

mean(mars$income)

[1] 80938.1

What does the sample mean ȳ tell us? For one, it is an estimate of the true
population mean. The true population mean is the “centre” of the distribution (e.g.
the centre of a bell curve) that is generating the values for the variable. The true
population mean of y is the value that we expect to observe for y.

The sample mean gives us an idea about the centre or location of the variable’s
distribution, and is called a “measure of central tendency.” The sample mean is the
“centre of mass” of the variable. That is, if the histogram of the variable were a physical
object, the mean would be the location where we could balance the object on one finger
along the x-axis.

The sample mean is one of the most important statistics, because it defines a very
important feature of a distribution: its location.

5.2 Sample median

Another measure of “central tendency” is the sample median. The sample median is
the “middle” observation. The sample median is the value for which half of the other
values are smaller, and the other half are larger. That is, for a variable y, the median
of y is where:

50% of values ≤ median(y) ≤ 50% of values (5.2)

Whether the inequality is < or ≤ in Equation 5.2 depends on whether the sample size
n is odd or even. The algorithm for finding the median is as follows:
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1. Order the observations in the sample from smallest to largest.
2. Label the smallest observation the 1st observation, the second smallest the 2nd

observation, all the way to the nth observation.
3. Find the middle observation(s) in the ordered list.

� If n is odd, the middle observation is (n+ 1)/2. This is the median.
� If n is even, there are two middle observations. The median is the sample
mean of these two middle observations. (The two middle observations are
the (n/2)th and [(n+ 1)/2]th.)

Example 5.3 — Sample median of y. Take the variable y = {6, 2, 5, 6, 1} again. To
calculate the median, we start by ordering the variable:

yordered = {1, 2, 5, 6, 6}
The sample size is odd (n = 5) so the middle observation is the 3rd observation
((n + 1)/2 = 3). Finding the 3rd observation in the ordered variable gives us the
median at 5.

Example 5.4 — Sample median of income. Load the Mars data:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

We can calculate the sample median of “income” using the median() function:

median(mars$income)

[1] 70094

The sample median is important for similar reasons that the sample mean is im-
portant. It is a defining feature of the true underlying distribution that is generating
or describing the data that we observe. In addition, it gives an idea about the “centre”
or “middle” of the distribution of a random variable.

5.3 Comparing sample mean and median

The sample mean and sample median are both “measures of central tendency,” but
they have some pretty important differences.

For one, the sample mean is arguably more important than the sample median
when characterizing the true underlying distribution. This is because many statistical
distributions are defined by their mean. Later we will see that the mean (µ) is one of
two parameters that define the bell curve.

Second, the median is perhaps a more intuitive concept and may be easier to un-
derstand. The median is the middle where 50% of values are below and the other 50%
are above. This is easy to understand. In contrast, the mean is a bit more abstract,
using concepts such as “centre of mass” or “expected value”. However, when it comes
to actually calculating the number, the mean is easier; just add them all up and divide
by n.

Third, the sample median is unaffected by extreme values or outliers, whereas the
mean is. For example, as long as 50% of the values are larger, the median will not
change even if those 50% of values are located close to the median, or way far out in
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the tail. That is, once the median has been found, all the values to the left (or right) of
the median could be stretched out or rearranged and the median would be unchanged.

Example 5.5 — Resistance of the median to outliers. Take the ordered y variable from
Example 5.2: y = {1, 2, 5, 6, 6}. The sample mean and median of y are:

ȳ = 4

median(y) = 5

Now, let’s try changing the last value in the y variable so that it is an outlier, for
example let:

y = {1, 2, 5, 6, 100}

Calculate the sample mean and median using R:

y <- c(1, 2, 5, 6, 100)

mean(y)

median(y)

> mean(y)

[1] 22.8

> median(y)

[1] 5

The sample mean has been drastically affected by this outlier (it went from 4 to
22.8), and the sample median has remained unchanged.

In a symmetrical distribution, the mean and median are always the same. In an
asymmetrical distribution, they are always different. For example, in a right skewed
distribution, the mean will always be greater than the median. If outliers are suspected
to be in the data set, the median might be a safer measure of “central tendency” since
the sample mean can be greatly swayed by extreme values.

5.4 Percentiles and quartiles

The median is the 50th percentile, and is also the 2nd quartile. The median divides the
distribution into two. We could also divide the distribution into four and get quartiles,
or we could divide the distribution 1% at a time and get percentiles(if we have enough
observations). Percentiles and quartiles are a natural extension to the median; the
median is just a special case.

5.4.1 Percentiles

To calculate a percentile, we again start by arranging the values of the variable in
increasing order. Then, we count to the required percentage starting at the first ob-
servation. For example, the 20th percentile would be the (0.2 × n) + 1 observation of
the ordered variable. For a sample size of n = 101 for example, this would be the 21st
largest value of the variable. 20% of the values would be smaller, 80% of the values
would be larger.

Similar to the median, there may not be an exact correspondence between the
desired percentile and the observation number in the ordered list. In this case, we
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would take the sample mean of two values instead. For example, if n = 100, the 20th
percentile would be the sample average of the values for the 20th and 21st observation.

Percentiles can be used to measure the spread of a variable. A 5% probability (a 1
in 20 chance) is a common value chosen in statistics for classifying an “extreme” event.
We might wonder, in the extreme, what is the best and worst that could happen? The
mean height of a person may be 1.65m, but that doesn’t tell us anything about the
extremes or spread of the distribution. What height marks the shortest 5%? At what
income level are the top 5% of earners above?

Finally, quantiles are very similar to percentiles. A quantile is just expressed in
different units (not in percentage points but as a real number between 0 and 1). For
example, the 20th percentile is the 0.2 quantile.

Example 5.6 — Top and bottom 5% of Mars income earners. Load the Mars data:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

To find the 5th percentile (the value for which approximately 5% of incomes are
smaller):

quantile(mars$income, 0.05)

5%

39092.15

So, 39092.15 is the 5th percentile of income. To find the income that marks the top
5% of earners, we can use:

quantile(mars$income, 0.95)

> quantile(mars$income, 0.95)

95%

157921.2

5.4.2 Quartiles

Quartiles break up a distribution into four quarters. That is, one-quarter of the values
will fall into each quartile. The 1st, 2nd, and 3rd quartiles correspond to the 25th, 50th,
and 75th percentiles, respectively. The 2nd quartile is the same as the median. The
first quartile is found by ordering the values, and then counting to the (0.25 × n) + 1
observation. Again, two values might need to be averaged if (0.25 × n) + 1 is not an
integer. Similarly, the 3rd quartile is the (0.75× n) + 1 ordered value, and we already
know how to find the 2nd quartile (the median).

Quartiles are more common than percentiles, and are a simple way to summarize
the spread and shape of a distribution. When summarizing a variable, it is common to
report the values for the 1st, 2nd, and 3rd quartiles, as well as the sample mean. The
values for the quartiles tell us if the distribution is skewed, and in which direction, and
can help to select the right distribution in order to characterize a variable.

Example 5.7 — Quartiles of income. Load the Mars data:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")
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To find the quartiles of “income” we can ask for the 25th, 50th and 75th percentiles
using the quantile() function:

quantile(mars$income, c(.25, .5, .75))

25% 50% 75%

53516.25 70094.00 96815.00

So, the quartiles of income are {53516, 70094, 96815}. What does this tell us? No-
tice that the gap between the 1st quartile and the median (approximately 17k) is
smaller than the gap between median and 3rd quartile (approximately 27k). In a
symmetrical distribution, these gaps would be equal. The distribution is skewed to
the right.

5.5 Min and Max

The minimum value and maximum value of a variable are sometimes reported. Similar
to median, percentiles, and quartiles, we find the min by sorting the values of the
variable in ascending order and selecting the 1st observation. Likewise, the max is the
nth observation.

Example 5.8 — Min and max of Mars incomes. Load the Mars data:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

The minimum income in the data is 24973, and the maximum is 358318. To find
this in R use:

min(mars$income)

max(mars$income)

> min(mars$income)

[1] 24973

> max(mars$income)

[1] 358318

5.6 Summary of a variable

A variable is often “summarized” using some of the statistics that we have defined. In
particular, the sample mean, quartiles, and min and max can be reported to provide a
numerical characterization of the distribution of a variable.

Example 5.9 — Summary of Mars incomes. Load the Mars data:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

Use the summary() command:

summary(mars$income)

Min. 1st Qu. Median Mean 3rd Qu. Max.

24973 53516 70094 80938 96815 358318

Notice how several statistics from the previous few examples have all been calculated
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under the summary() command.

5.7 Sample variance

The sample variance (and the closely related standard deviation) is a very common and
important measure of the “spread” of a variable. It is very important for at least two
reasons. (i) Along with the (population) mean, the (population) variance is a defining
feature for most distributions. That is, if you know the mean and the variance, you can
draw most statistical distributions in a plot (for example the bell curve). (ii) Sample
variance provides a numerical measure of the average distance between each value and
the centre of the distribution. Sample variance quantifies the chance of “extreme”
values occurring.

The formula for calculating the sample variance of a variable y is:

s2y =
1

n− 1

n∑
i=1

(yi − ȳ)2 (5.3)

Similar to how we used the symbol ȳ to denote the sample mean, we also use a
symbol to denote the sample variance: s2y. If we were calculating the sample variance
of income we would denote it s2income. The summation operator Σ is again telling us
to add something up, starting at the first observation and ending at the last. This
time, however, we are subtracting the sample mean from each observation, squaring
that “distance”, and then adding up all of these squared “distances”.

Notice that sample variance is essentially a measure of distance.2 Each value in the
variable is compared to the sample mean (yi − ȳ). This is measuring how far away
the values tend to be from the “centre”. However, we want to combine all of these
distances into a single measure, so we add them up. But if we just added up all of the
the (yi − ȳ), negative distances would cancel out the positive distances!

To avoid this, we could take the absolute values of the distances: |yi−ȳ|. This would
lead to an alternative measure of the spread or dispersion of a variable, called the “Mean
Absolute Deviation.” The sample variance is a more popular measure of dispersion,
and instead of taking absolute distances, we take squared distances: (yi − ȳ)2. The
squaring in the formula means that all distances are now positive, but that variance
is very sensitive to large values in the data. As a value gets further and further away
from the sample mean, the squared distance gets even further. Note that the “square”
in the Equation 5.3 means that sample variance can never be negative. The smallest
possible value for 5.3 is 0. A 0 can only occur when all of the values for yi are identical
(and hence there is no variation).

When we calculated the sample mean, we added everything up and then divided by
n. Here we are instead dividing by n− 1. Why? The reason is somewhat complicated,
and we will not go into depth in this book. Instead, we will provide a cursory treatment
of the topic of degrees of freedom in order to understand this n− 1 in the formula for
sample variance.

Degrees of freedom

Degrees of freedom can be thought to account for the number of independent pieces
of information available when calculating a statistic. In Equation 5.3, notice that the

2In particular, sample variance involves the squared Euclidean distance.
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formula for the statistic s2y involves another statistic (ȳ)! Having the ȳ on the right-
hand-side of the formula for s2y turns out to cause a distortion, and one degree of
freedom is lost. Instead of n pieces of sample information, there are now only n − 1
pieces of information available when calculating s2y.

This can be seen in a simple example. Take the variable y = {1, 3, ?}, and the
sample mean of y at ȳ = 3. Can you figure out the missing y value? Good job!
Together with ȳ, only 2 out of the 3 sample values (n− 1) actually provide any unique
information.

Example 5.10 — Sample variance of y. We’ll use the variable y = {6, 2, 5, 6, 1} again,
and calculate the sample variance. First we need to calculate ȳ = 4. We take each
of the values in the variable, subtract the mean, square the difference, and add al
the squared differences:

i yi ȳ (yi − ȳ) (yi − ȳ)2

1 6 4 2 4
2 2 4 -2 4
3 5 4 1 1
4 6 4 2 4
5 1 4 -3 9

22

Finally, we divide the sum by by n − 1 = 4 to get the sample variance of s2y =
22/4 = 5.5. We can also easily calculate this sample variance in R:

y <- c(6, 1, 2, 5, 6)

var(y)

> var(y)

[1] 5.5

Example 5.11 — Sample variance of Mars incomes. Load the Mars data and take the
sample variance:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

var(mars$income)

> var(mars$income)

[1] 1605382317

This is quite a large number! What does it tell us? It is difficult to interpret this
number, unless we compare it to some other distribution. For example, we could
calculate the sample variance for Earth incomes, and see which distribution is more
spread out.

5.8 Sample standard deviation

Standard deviation is the square root of variance. The formula to calculate the sample
standard deviation for a variable y is:
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sy =
√
s2y =

√√√√ 1

n− 1

n∑
i=1

(yi − ȳ)2 (5.4)

The standard deviation is obviously closely related to the sample variance, and
often the two are used interchangeably. An important difference, however, is that sy
has the same units of measurement as y (whereas s2y does not). Sometimes, the value
of a variable is compared to the number of “standard deviations” it is away from the
sample mean. This can provide an idea of how “extreme” a value is.

Example 5.12 — Standard deviation of Mars incomes. What is the standard deviation
of Mars incomes? We know from Example 5.11 that:

s2income = 1, 738, 740, 548

so that the standard deviation is:

sy =
√
s2y =

√
1738740548 = 41698.21

We can also get this number straight from R:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

sd(mars$income)

[1] 40067.22

5.9 Skewness and Kurtosis

When calculating ȳ we added up the yi values (they were to the power of 1). When we
calculated s2y we added up squared differences (yi − ȳ)2 (they were to the power of 2).
We could also add up cubed differences, and differences to the power of 4, or as high
as we like! A statistic involving cubed differences is the skewness of the variable:

skewness =
1
n

∑n
i=1 (xi − x̄)3[

1
n−1

∑n
i=1 (xi − x̄)2

]3/2 (5.5)

We have already encountered the concept of skewness as a visual descriptor of a
distribution. Equation 5.5 is a way of quantifying skewness. For example, a positive
value for sample skewness means the right tail of the distribution is relatively more
stretched out. The magnitude of sample skewness measures how stretched the tail is.

Similarly, kurtosis is a statistic that involves differences to the power of 4, but we
do not report the formula here. Like variance and skewness, kurtosis is a measure of
the shape of a distribution. Kurtosis measures whether the tails of the distribution are
fat or slim. The higher the kurtosis number, the fatter the tails.

Skewness and kurtosis are more abstract and less intuitive than mean and variance.
We introduce them here in order that we may later talk about the Jarque-Bera test for
Normality, in Section 13.3.1.
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5.10 Correlation

Correlation is a measure of the relationship between two variables. Correlation mea-
sures:

� how two variables move or vary in relation to each other.
� the direction of the relationship between two variables.
� the strength of the relationship between two variables.

The equation for the sample correlation between two variables (x and y for example)
is:

rxy =
1

n− 1

∑n
i=1 (xi − x̄) (yi − ȳ)

sxsy
(5.6)

Lower case “r” is used to denote the sample correlation coefficient. sx and sy are the
sample standard deviation of x and y (see Section 5.8).

Figure 5.1: Scatterplots and sample correlations for x and y variables.

Correlation measures how often and how far two variables differ from their sample
mean value (notice the xi− x̄ and yi− ȳ terms in Equation 5.6). If both variables tend
to be larger than their mean at the same time, then correlation will be positive. If
when one variable is larger than its mean, the other tends to be smaller than its mean,
correlation will be negative. The larger the magnitude of the correlation number, the
more often this statement holds true for specific pairs of values.
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Correlation. Correlation is a measure of the direction (either negative or positive)
and strength (between -1 and 1) of the association between two variables.

If the correlation is positive, then when one variable is larger (or smaller) than
its mean, the other variable tends to be larger (or smaller) as well. The larger the
magnitude of covariance, the more often this statement tends to be true. Covariance
tells us about the direction and strength of the relationship between two variables.

Note the following properties of rxy:

� rxy is a measure of the linear relationship between x and y. Non-linear relation-
ships cannot be quantified using correlation.

� rxy = 0 implies that x and y are linearly independent.
� If x and y are independent (neither variable causes the other), then rxy = 0. The
converse is not necessarily true.

� Correlation is bound between -1 and 1. That is, −1 ≤ rxy ≤ 1.
� A positive covariance means that the two variables tend to differ from their mean
in the same direction.

� A negative covariance means that the two variables tend to differ from their mean
in the opposite direction.

� rxy = 1 means perfect positive linear association between x and y.
� rxy = −1 means perfect negative linear association between x and y.

Correlation is a basic, and extremely common way to quantify the relationship
between two variables. The correlation coefficient is almost always reported when
discussing two variables that are thought to be associated.

Correlation is a way to quantify some of the association between variables that we
can “see” in a scatterplot, and you may have recognized the same terms direction and
strength being used in the section as were used in Section 4.7. Figure 5.1 shows several
scatterplots along with the sample correlation between the variables being plotted.

Example 5.13 — Sample correlation. To calculate a sample correlation in R, use the
cor() function:

cordata <- read.csv("http://rtgodwin.com/data/cordata.csv")

cor(cordata$x, cordata$y)

[1] -0.7467756

The scatterplot for this data is shown in Figure 5.1. The sample correlation of
-0.75 tells us that there is a negative or inverse relationship between x and y, and
that the relationship is quite strong.

Using the Mars data, calculate the sample correlation between income and ed-
ucation:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

cor(mars$income, mars$years.education)

[1] 0.4552673

With a correlation of r = 0.46, there is a fairly strong and positive relationship
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between education and income. That is, when education tends to be higher (than
the sample mean value) so does income.



6. Density curves

In this chapter, we introduce the concept of a probability distribution function (also
called a density curve), and discuss several related topics. This chapter assumes a basic
understanding of the concept of probability. In the next chapter, we go into greater
detail on the meaning and rules of probability and randomness. In addition to using
density curves when we discuss probability, we will also make heavy use of them later
on for hypothesis testing, and in particular for p-values.

6.1 Probability distributions (densities)

A “probability distribution function”, is also called a “density curve”, or just “density”.
It is a mathematical way of modelling a variable’s distribution. A probability function
is an equation (it can also be a graph or table), which contains information about a
random variable. The nature and properties of the randomness determines what type
of equation is appropriate (for example a bell curve, or something else).

Density curve / probability distribution / probability function. The probability
function accomplishes two things: (i) it lists all possible numerical values that the
random variable can take, and (ii) assigns probabilities to ranges of values.

Areas under the distribution / density

A range of values on the x -axis corresponds to an area underneath the probability
distribution. The area is the probability that the random variable will take on a value
in the x -axis range. This means that, in the long run, an area under the density curve
is equal to the proportion of values that fall in that region. Since the distribution /
density function lists all possible numerical values that the variable can take, the area
under the entire density curve must sum to 1.

6.2 Continuous uniform distribution

The continuous uniform distribution is a starting point in the illustration of probabil-
ity distributions. The uniform distribution is defined by it’s endpoints a and b. For
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simplicity, let a = 0 and b = 1. If a variable y follows this distribution, we write:

y ∼ U[0,1]

Such a variable has an equal probability of taking on any value in the interval [0,1].
The probability distribution can be written as:

f(y) =

{
1 for 0 ≤ y ≤ 1

0 for y < 0 or y > 1
(6.1)

Equation 6.1 defines the height of the density curve for any value of y, and is depicted
in Figure 6.1. To calculate the probability of y taking on a certain value in a range,
we calculate the area under the density curve. For example, if we want to know the
probability that y will be between 0.2 and 0.6, we calculate the area under the density
curve, between 0.2 and 0.6. This area, and probability, is height× width = 1× (0.6−
0.2) = 0.4.

Figure 6.1: Density curve for a uniform U(0,1) distribution. The area under the density
curve represents the probability that y will be between 0.2 and 0.6.

6.3 Discrete uniform distribution

The discrete uniform distribution describes random variables that have an equal prob-
ability of taking on a finite number of values, for example a coin flip or a die roll.
The following chapter will make extensive use of this distribution as a simple setting
in which to explore and discuss various topics on probability and randomness. If y
is the result of a die roll (y = , , , , , or )), then y follows a discrete uniform
distribution and we can write:

y ∼ U{1, 6}

If the variable is discrete, then probabilities are determined by the height of the density,
not the area under the density curve. Figure 6.2 shows the density function for a die
roll that follows a discrete uniform distribution U{1, 6}.

6.4 The Normal distribution

The Normal distribution is an important probability distribution. It is important be-
cause it describes many different random variables. The probability function for a
normally distributed random variable y is:

f(y) =
1√
2πσ2

exp

(
−(y − µ)2

2σ2

)
(6.2)
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Figure 6.2: The discrete uniform distribution describes a die roll. For a discrete variable,
the height of the distribution is the probability of y taking a value.

Equation 6.2 can look a little scary. But this is just the bell curve! If you plug in a
y-value, you get a height on the Normal (bell) curve. If you plug in many y values
into this equation, you can trace out the curve. Equation 6.2 has two parameters: µ
(the mean) and σ (the standard deviation). These parameters control the location and
shape of the curve.

If a variable y follows a Normal distribution we can write:1

y ∼ N(µ, σ)

Figure 6.3 shows Normal distributions for three different means and standard devia-
tions: N(100, 15), N(100, 30), and N(130, 15).

Figure 6.3: The mean (µ) controls the location of the normal distribution, and the
standard deviation (σ) controls the shape.

6.4.1 Areas under the Normal density

An area under a probability distribution function (density curve) is the probability of
an observation lying in that range of values. Alternatively, it is the portion of times the

1It is also common to write the normal distribution in terms of its variance (σ2) instead of its standard
deviation (σ): N(µ, σ2).
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Figure 6.4: The probability of 85 ≤ y ≤ 115 is an area under the Normal density.

variable is in the specified range. Calculating an area under the Normal distribution is
trickier than, for example, the continuous uniform distribution, and requires integration
(not covered in this book).

For example, suppose that y ∼ N(100, 15) and we wish to know the probability
of y being between 85 and 115. This probability is the area under the N(100, 15)
curve shown in Figure 6.4. Note that, in this example, the range of values (85 to
115) happens to be plus-and-minus one standard deviation around the mean of the
distribution: µ± σ = 100± 15 = [85, 115].

6.4.2 68-95-99.7

The Normal distribution has an interesting property. No matter what the mean (µ) or
variance (σ2) of the Normal distribution, the area under the curve is always the same
when the region of values is measured in standard deviations.

For example, if we take a range of ±σ around the centre of the distribution (µ),
then the area under the curve in this region is always 0.68 (68%) (see Figure 6.4).2 This
holds true no matter what the values of µ and σ. 95% of the area is within 2 standard
deviations of the mean (µ±2σ), and almost all of the area (99.7%) is within 3 standard
deviations. Remember that area under the curve is probability. So this means that,
for example, if a variable is Normally distributed then there is an approximate 95%
probability that it will be within 2 standard deviations from its mean.

6.4.3 Standard Normal distribution N(0,1)

Due to the property that areas under the Normal curve are identical when regions are
defined by standard deviations, any Normal distribution can be transformed so that the
x-axis is measured in standard deviations. Putting standard deviations on the x-axis
of the bell curve (instead of whatever units the variable was originally measured in), is
called standardizing.

If y is a Normally distributed variable, then to standardize we subtract the mean
(µ) form y, and divide by the standard deviation (σ). This creates a new random

2The values 68-95-99.7 are approximate.
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variable (call it z):

z =
(y − µ)

σ

Standard Normal distribution. The Standard Normal distribution is a special case
of the Normal distribution: it has mean µ = 0 and standard deviation σ = 1, and is
denoted N(0, 1).

The original variable y has a Normal distribution with mean µ and variance σ2 (we
write this N(µ, σ2)). The z variable, which is created from y, has mean 0 and variance
1 (N(0, 1)). No matter what the values are for µ and σ2, z will always be N(0, 1).
N(0, 1) is a special case of the Normal distribution, and is called the Standard Normal
distribution.

If we want to know the probability that y is within a range of values, we need
to draw the Normal curve for y, and then calculate the area under the curve. Each
situation presents different values for µ and σ, meaning that for each situation we have
to draw a unique curve and calculate a unique area. This was historically problematic.
Without computers, drawing these curves and calculating these areas was difficult.

Instead of drawing a curve and calculating an area for each unique situation, we
can transform the situation such that it is characterized by the standard Normal dis-
tribution. This means we can have one curve, and we can calculate a bunch of areas
under that curve once. These areas are reported in a Standard Normal table.

The benefit of “standardizing” a variable (subtracting its mean and dividing by its
standard deviation) has somewhat been diminished along with advances in computing
power. However, the topic is still worth studying. Standardization is ingrained in
statistics, and some other concepts build upon or are analogous to it.

6.4.4 Testing for Normality

Often, we are unsure as to whether a variable is Normally distributed, or even approxi-
mately Normal. We can test to see if a variable is Normal, using some of the properties
that Normal variables always have. We will revisit this topic later in Section 13.3.1.

Normal quantile-quantile plot

A Normal quantile-quantile plot (Q-Q plot) is where a variables quantiles (according
to the Normal distribution) are plotted on the x-axis, and the variable itself is plotted
on the y-axis. Remember that a quantile is very similar to a percentile (see Section
5.4.1).

If the variable is Normally distributed, then the scatter plot of the quantiles vs. the
values should approximately form a straight line. The Normal Q-Q plot is an informal
visual aid for determining if a variable is Normally distributed (or distributed according
to whatever distribution generates the quantiles).

Jarque-Bera test

We will only mention this test for now. One property of the Normal distribution that
we have not discussed is that its skewness is always 0 (you might have guessed this
already, since it is a symmetric distribution), and its kurtosis is 3. We can compare
the sample skewness and kurtosis of our data to see if they are close to that which is
required for a Normal variable.
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6.5 t-distribution

Figure 6.5: Comparison of t-distributions with different degrees of freedom (df ), and
the Standard Normal N(0, 1) distribution.

t-distribution. The t-distribution is used in hypothesis testing, and is similar to the
N(0, 1) distribution, becoming more and more Normal as the degrees of freedom (df )
increases.

The t-distribution is most commonly used in hypothesis testing when the sample
size n is small (see Section 11.2). The t-distribution is similar to the Standard Normal
distribution, except that it has flatter tails. The t-distribution has only one parameter
that controls its shape, called the degrees of freedom (df ). As the degrees of freedom
df increases, the t-distribution becomes closer and closer to the Standard Normal dis-
tribution N(0, 1). If df is large enough, then the Standard Normal distribution can be
used as an approximation to the t-distribution. Several t-distributions with varying df
are drawn in Figure 6.5, as well as the N(0, 1) for comparison.



7. Probability and Randomness

Probability is a way of providing structure to randomness. If there is uncertainty
(randomness) surrounding a particular event, usually the best we can do is try to assign
it a probability. In this chapter we discuss and define randomness and probability, and
some related topics.

7.1 Randomness

Something is said to be random if its occurrence involves a degree of unpredictability
or uncertainty. Outcomes that we cannot perfectly predict are random. Randomness
represents a human failing, an inability to accurately predict what will happen. For
example, if we roll two dice, the outcome is random because we are not skilled enough
to predict what the roll will be. Things that we cannot, or do not want to predict
(because it is too difficult), are random. We cannot know everything. However, we can
attempt to model randomness mathematically.

The idea that randomness embodies a lack of information does not oppose a deter-
ministic world view. While many things in our lives appear to be random, it is possible
that all events are potentially predictable. In the dice example, it is not too far-fetched
to believe that a camera connected to a computer could analyze hand movements and
perfectly predict the result of a dice roll before the dice finish rolling!

Just because an outcome or event is random, doesn’t mean that it is completely
unpredictable, or that we can’t at least try to guess what will happen. This is where
probability comes in. Probability is a way of providing structure for things that are
uncertain or random.

7.2 Sample space, outcomes, and events

Before we define probability, it is helpful to establish some terminology.

Random process. A process that results in some uncertain outcome.
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Sample space. The sample space is the set of all possibilities (all outcomes) that can
occur as a result of the random process.

Outcome. An outcome is a single point in the sample space. After the randomness
resolves (is realized), the random process results in a single outcome.

Event. An event is a collection of outcomes. An event is a subset of the sample
space.

Depending on the nature of the random process, the sample space may consist of
integers or real numbers, qualities (for example ethnicity or gender), colours, locations,
time, etc. The nature of the sample space, and the properties of the elements in
the sample space, vary by random process. The sample space could be countably or
uncountably infinite (e.g. the set of all integers or the set of all real numbers), could
be bounded (e.g. between the number 0 and 1) or unbounded (e.g. between −∞ and
+∞), and could take on a finite number of possibilities (e.g. 1, 2, 3, 4, 5, 6).

Out of all the possibilities in the sample space, the outcome is where the random
process arrives at. The outcome is a single element, point, or number, in the sample
space.

An event is a collection of outcomes. There are three good reasons for caring to
define events. (i) When we want to know the probability of something occuring, that
something is usually a collection of outcomes. For example, what is the probability
that someone is a millionaire? The event of interest consists of all the dollar outcomes
that are greater than $1 million. What is the probability that it will be cold tomorrow?
“Cold” means below a certain temperature, not an exact temperature.

(ii) When the sample space has an infinite number of possibilities, as is the case
for any continuous random variable (such as temperature or income), the probability
of any one outcome occurring tends to zero. What is the probability that it will be
−20◦C? What about −20.1◦C What about −20.000 01◦C? Since there are infinite
possibilities, the probability of any one of them occurring goes to 0. Instead, we must
talk about ranges of values if we want to end up with non-zero probabilities. A range
of values is just a collection of outcomes, or an event.

(iii) Finally, an event represents an area under the density curve (see Section 6.1).
We will be able to calculate the probability of events using a density curve.

Example 7.1 — Rolling 2 dice. Consider the random process of rolling 2 dice.

1. What is the sample space?

The sample space is the set of all possible outcomes that can result from
rolling two dice. In this example, the sample space contains a finite number
of outcomes:
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2. Give an example of an outcome.

An outcome is any one of the 36 entries in the table, for example . After
the dice are rolled, one of these outcomes will occur.

3. Give an example of an event.

There are many events that we could consider. For example:

� Rolling a 4. This event is a collection of the outcomes , , and
.

� Rolling higher than 10. This event is a collection of the outcomes ,
, and .

� Rolling an even number. This a collection of half (18) of the outcomes
in the table.

Example 7.2 — Percentage mark on a midterm. What percentage mark will you
receive on your next midterm? If the professor told you that the midterm was out
of 100 marks and no part-marks would be given, then the sample space would have
exactly 101 values: {0%, 1%, 2%, . . . , 100%}.

If the professor does not tell you the marking structure of the midterm, then your
percentage score could be anything between 0% and 100%! Infinite possibilities. In
this case, the sample space is written as [0%, 100%]. An outcome is any value in this
range, and you will receive one of them for your score. An event, such as receiving
an “A+”, is the collection of outcomes [93%, 100%], and is a subset of the sample
space.

7.3 Probability

Probability can be defined several ways. There is a somewhat philosophical debate
between “frequentists” and “Bayesians” on the definition and meaning of probability.
I take the frequentist approach.

Probability. The probability of an event is the portion of times the event will occur,
if the event could occur repeatedly.

A probability is a number between 0 and 1 that is assigned to an event (sometimes
expressed as a percentage). The probability of an event is the proportion of times it
occurs in the long run. This definition is straightforward when we think about rolling
dice or flipping a coin. The random process of flipping the coin can easily be repeated.
If we imagine flipping the coin many (infinite) times, the proportion of times each event
happens (heads or tails) is the probability. This definition of probability works because
we can imagine repeating the random process many times under similar settings.

What about events that occur seldomly or only once? What is the probability that
you will obtain an A+ in this course? What is the probability that Donald Trump will
be president in 2025? For these examples, the former definition of probability takes a
little bit more work and imagination. We need to imagine the random process being
repeated many times under similar situation. For example, think of many parallel uni-
verses that are identical except for your performance in this course. In what proportion
of those universes do you receive an “A+”?

A more general definition of probability is that it is a mathematical way of quan-
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tifying uncertainty. For the Trump example, Bayesians would say that the probability
of re-election is subjective. I may think the probability is 0.1, but someone else may
assign a probability of 0.9. Which is right? These problems are better suited to a
Bayesian framework, which is not discussed further in this book. The first definition
of probability will be sufficient for the topics covered here.

Example 7.3 — Probabilities when rolling dice. When rolling 2 dice, what are the
probabilities of various events? It turns out we can assign a probability to any
event by making a simple assumption: there is an equal probability of the diea

landing on any one of its six sides. That is, we assume that the die is “fair”. This
means that each of the outcomes in the sample space:

has an equal probability of occurring (a 1/36 probability). To determine the proba-
bility of an event, we simply count the number of outcomes that satisfy the event,
and add up the probabilities (this uses a rule of probability that we will discuss in
Section 7.6). For example:

1. The probability of rolling a “7” is 1/6. This is because there are 6 “ways” to
roll a “7”, out of the 36 possible outcomes: , , , , , and

. So, Pr[Y = 7] = 6/36 = 1/6. Here, “Pr” stands for probability, the event
is written in the square brackets [ ], and Y needs to be defined as the sum of
2 die rolls.

2. The probability of rolling a “2” is 1/36. Only 1 outcome satisfies the event:
.

3. The probability of rolling a “1” is 0, since there are no outcomes in the sample
space that can satisfy the event.

4. The probability that the roll is higher than “10” is 3/36: 3 outcomes out of 36
satisfy the event.

a“Die” is the singular of “dice”.

7.4 Random variables

Random variable. A random variable assigns a unique numerical value to each of
the possible outcomes in the random process.

A random variable is when outcomes are translated into numerical values. For
example, a die roll only has numerical meaning because someone has etched numbers
onto the sides of a cube. A random variable is a human-made construct, and the choice
of numerical values can be arbitrary. Different choices can lead to different properties of
the random variable. For example, I could measure temperature in Celsius, Fahrenheit,
Kelvin or something new (degrees Ryans).



7.5 Independence 71

7.4.1 Discrete and continuous random variables

Random variables can be discrete or continuous (see Section 4.3). A discrete random
variable takes on a countable number of values, e.g. {0, 1, 2, ...}. The result of the dice
roll is a discrete random variable. Number of years of education, ethnicity, gender, are
all examples of discrete random variables.

In contrast, a continuous random variable takes on a continuum of possible values
(an uncountably infinite number of possibilities). Some examples of continuous random
variables that we have mentioned so far are temperature, income, GDP, happiness score,
etc.

Although a continuous random variable may have lower and upper bounds, there are
still infinite possibilities. The temperature tomorrow is a continuous random variable,
that may be bound between -50◦C and 50◦C, but there are still infinite possibilities.
What is the probability that it is 20◦C? What about 20.1◦C? What about 20.0001◦C?
We could keep adding 0s after the decimal.1 In fact, the probability of the temperature
taking on any one value (outcome) approaches 0. For continuous random variables,
instead of considering individual outcomes, we must consider ranges of outcomes (recall
that a range of outcomes is defined as an event). For example, we could consider the
probability that the temperature will be above 20◦C.

7.4.2 Realization of a random variable

Finally, we make note of the difference between a random variable and the realization
of a random variable. Before we roll the die, the outcome is random. After we roll the
die and get a (for example), the “4” is just a number - a realization of a random
variable. It might be confusing to see a spreadsheet full of numbers in R and call them
random variables, but the idea is that the numbers we see are the realizations or results
of a random process.

7.4.3 Key points

Some of the key points we have discussed in this section are:

� A random variable can take on different values (or ranges of values), with different
probabilities.

� It is sometimes helpful to differentiate between discrete and continuous random
variables.

� Continuous random variables can take on an infinite number of possible values,
so we can only assign probabilities to ranges of values (events).

� We can assign probabilities to all possible values (outcomes) for a discrete random
variable, because we can count all the outcomes that can occur.

� When randomness resolves, we see the outcome as a realization of the random
process. It is now just a number.

7.5 Independence

Often, we consider two or more random processes simultaneously. In economics, we
frequently want to know if one variable is “associated” with, or “causes” another. For
example, how does a change in inflation effect GDP or employment? How does the
number of years of education of a worker influence their wages? There are elements of

1We have already discussed this idea in Sections 4.3.2 and 7.2.
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randomness in all of these variables. When considering two or more potentially random
processes together, a key consideration is whether or not the processes are independent.

If two random variables are independent, then the outcome of one variable does
not influence the outcome of the other variable. Observing the value (outcome) of one
variable does not give any clues about what the other variable will be. Finding out
that two random variables are independent is very important in statistical analyses.

Implications of independence. If two variables are independent, then:

� The outcome of one variable can’t influence or affect the other.
� One variable is useless for predicting the outcome of the other variable.
� Neither variable can cause the other.

For example, finding out that education and income are independent would be a
shocking discovery. It would mean that education could not cause an improvement in
wages.

Example 7.4 — The gambler’s fallacy. The gambler’s fallacy occurs when the inde-
pendence of events is ignored. It is an incorrect belief that if independent events
occur more or less than usual, then that must mean that the event is more (or less)
likely to occur in the future.

For example, if a slot machine has been “cold” all night (has not paid out any
jackpots), then that must imply that the probability of a jackpot on the next pull is
somehow effected (different gamblers may avoid or seek out such a machine). This
is an incorrect belief. The probability of a jackpot is the same for each pull. Each
pull is independent from the last - the past events do not change the probabilities
of future events.

What is the probability of rolling a “7” with 2 dice? From Example 7.3 we know
this to be 1/6. What if we had just rolled a “7” three times in a row? As long as the
dice are fair, and there is no magical being interfering with the dice, the probability
of rolling a “7” is still 1/6. Each roll of the dice are independent from each other.
Knowing past events does not help predict future events that are independent.

7.6 Rules of probability

Probabilities must follow several rules. These rules not only help to solidify our un-
derstanding of probability, but also have various uses. Below are five of the rules that
probabilities must follow.

Rule 1: Probabilities are always between 0 and 1

The probability of an event (call it “A” for example) must be between 0 and 1:

0 ≤ P(A) ≤ 1

The probability of an impossible event is 0, and the probability of a certain event is 1.
Everything else must be between these two “extremes”.

Rule 2: The probability of something happening is 1

The probability of some outcome occurring in the sample space is 1. Something must
happen. If the sample space is truly exhaustive (describes everything that can possibly
happen in the random process), then one of these outcomes must occur. To express



7.6 Rules of probability 73

this mathematically, we define an event called “S” which is comprised of all outcomes
in the sample space. Then:

P(S) = 1

Rule 3: Complements

If event A does not occur, then the event “not A” must occur. Ac is the event “not
A”, and is called the complement of event A. The probability of Ac occurring is:

P(Ac) = 1− P(A)

Rule 4: Addition

The probability of either event “A” or event “B” occurring can be determined by
adding and subtracting probabilities depending on whether the two events are mutually
exclusive or not.

(a) If “A” and “B” are mutually exclusive (meaning that they do not have any out-
comes in common) then:

P(A or B) = P(A) + P(B)

(b) If “A” and “B” are not mutually exclusive (they have some outcomes in common),
then:

P(A or B) = P(A) + P(B)− P(A and B)

This is so we don’t “double-count” probabilities.

This rule extends to more than two events, for example: P(A or B or C) = P(A) +
P(B) + P(C) (in the case of mutually exclusive events).

Rule 5: Multiplication

The probability of both event “A” and “B” occurring can be determined through mul-
tiplication.

(a) If events A and B are independent (neither event influences or affects the proba-
bility of the other occurring) then:

P(A and B) = Prob(A)× Prob(B)

(b) If events A and B are dependent then we must condition on one of the events
occurring:

P(A and B) = P(A)× P(B|A) = P(B)× P(A|B)

The vertical line | means “conditional” or given. P(B|A) means the probability
of event B, given that A has already occurred.

This rule also extends to more than two events, for example: P(A and B and C) =
P(A)× P(B)× P(C) (in the case of independent events).
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Example 7.5 — Snow storm and a cancelled midterm. What is the probability of both
a snow storm and a cancelled midterm occurring? Suppose that in good weather the
probability of a midterm being cancelled tomorrow is only 1%. However, if there is
a snow storm, then the probability of a cancelled midterm is:

P(cancelled mid | snow) = 50%

Suppose further that there is a risk of a snow storm tomorrow and the weather
forecast gives it a 20% chance:

P(snow) = 20%

Using the multiplication rule, the probability that both a snow storm and a cancelled
midterm occurs is:

P(snow and cancelled mid) = P(snow)×P(cancelled mid | snow) = 0.2×0.5 = 0.1

7.7 Mean and variance from a probability distribution

Recall that a probability distribution lists all the possible outcomes that can occur for
the random variable, and assigns a probability to each outcome (or ranges of outcomes
in the case of a continuous random variable). Sometimes, we can use our intuition to
completely describe a probability distribution (for example, in the case of flipping a coin
or rolling dice). In other cases, we must use statistics to estimate some unknown parts
of the probability distribution (for example, the location and shape of the bell curve).
In this section, we will consider the former case, where the probability distribution is
known. When the probability distribution is completely known, we can calculate the
true population mean and variance directly. We begin this section with simple examples
of probability distributions, and then use them to calculate mean and variance.

Example 7.6 — Probability distribution for a coin flip. What is the probability distri-
bution for a coin flip? We begin by describing all the possible outcomes that can
occur. We can either get “tails” (T ) or “heads” (H). So, the sample space for the
coin flip (call it Y ) is {T,H}. Next, we need to assign a probability to each possible
outcome. If the coin is fair (not weighted), then the probability of each outcome is
equal. Putting this all together, we can write the probability distribution as:

P(Y = T ) = 0.5

P(Y = H) = 0.5

Example 7.7 — Probability distribution for a die roll. What is the probability dis-
tribution for a die roll? The sample space (all the outcomes that can occur) is:
S = {1, 2, 3, 4, 5, 6}. If the die is fair (not weighted), then the probability of each
outcome is equal. Denoting the result of the die roll as Y , we can write the proba-
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bility distribution as:

P(Y = 1) = 1/6

P(Y = 2) = 1/6

P(Y = 3) = 1/6

P(Y = 4) = 1/6

P(Y = 5) = 1/6

P(Y = 6) = 1/6

Probability distributions can be written in alternate ways. The important points are
that (i) all of the possible outcomes are defined, and (ii) probabilities are assigned
to each outcome. We can rewrite the above probability function as:

P(Y = k) = 1/6 ; k = 1, . . . , 6

7.7.1 Mean / expected value

The mean or expected value of a random variable is the value that is expected, or
the value that occurs on average through repeated realizations of the random process.
The mean of a random variable can be determined from its probability function. The
probability function contains all possible information we could hope to have about the
random variable, so it’s no surprise that if we want to know the mean we can use the
probability function. The mean (and variance, etc.) is just summarized information
derived from the probability function.

Sample versus population means. Caution! There is a confusing but important
distinction between the sample mean and the true population mean. Here, we are
discussing the true population mean. The true population mean is determined from
the probability function. The sample mean is determined by adding up sample values
and dividing by the sample size. The two are related: in general if you don’t know the
true population mean, you can instead use the sample mean to “guess” or estimate
the truth. This distinction is a key point in statistics, and we will try to highlight
its importance in the coming chapters.

Let Y be a discrete random variable, for example the result of a die roll. Notation
for the mean of Y or expectation of Y is µY or E[Y ]. As mentioned above, E[Y ] can
be determined from its probability distribution.

Mean of a discrete random variable. For discrete random variables, the mean is
determined by taking a weighted average of all possible outcomes, where the weights
are the probabilities of each outcome occurring. The equation for the mean of discrete
random variable Y is:

E[Y ] =

K∑
k=1

PkYk (7.1)

where Pk is the probability of the kth event, Yk is the numerical value of the kth
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outcome, and K is the total number of outcomesa.

aK can be infinite!

Example 7.8 — Mean of a die roll. Let Y be the result of a die roll. What is E[Y ]?
We will use Equation 7.1, and from the probability function for the die roll (see
Example 7.7) we know that K = 6 and each Pk = 1/6, so:

E[Y ] =
K∑
k=1

PkYk =
1

6
× (1) +

1

6
× (2) + ...+

1

6
× (6) = 3.5

Notice that the mean of 3.5 is not a number that we can possibly roll on the die!
However, it is still the expected result.

Mean for a continuous random variable

Equation 7.1 is valid for any discrete random variable. Calculating the mean of a con-
tinuous random variable is analogous, but more difficult. Again, the mean is determined
from the probability function, but instead of summing across all possible outcomes we
have to integrate (since the random variable can take on a continuum of possibilities).

Let y be a continuous random variable. The mean of y is

E[y] =

∫
yf(y) dy

If y is normally distributed, then f(y) is equation (6.2), and the mean of y turns out
to by µ. You do not need to integrate for this course, but you should have some idea
about how the mean of a continuous random variable is determined from its probability
function.

7.7.2 Rules of the mean / expected value

Some rules of the mean / expected value are discussed in this section. These rules
can help in the understanding of the concept of the mean, and can be useful in real
situations.

Rule 1: Mean of a constant

If the random variable is not random at all, but is a constant c, then E[c] = c.

Rule 2: Addition

The mean of the sum of two (or more) random variables is equal to the sum of the
means:

E[X + Y ] = E[X] + E[Y ]

where X and Y are random variables. Similarly, the mean of the sum of a constant
and a random variable is:

E[c+ Y ] = c+ E[Y ]

Rule 3: Multiplication by a constant

The expected value of the product of a constant and a random variable is equal to the
product of the means:

E[cY ] = c× E[Y ]
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Note that, in general, the expected value is not multiplicative. E[XY ] ̸= E[X] E[Y ].
Only if X and Y are independent is the expected value multiplicative. Note that a
constant c and a random variable Y are always independent!

Example 7.9 — Changing the numbers on a die. Suppose that we create our own
custom die. A typical die has sides that read , , , , , . On our custom die,
we instead make the sides read {3, 4, 5, 6, 7, 8}. What is the expected value (mean)
of the custom die?

Instead of defining the probability distribution for this custom die, and using
Equation 7.1, we can instead use the rules of the mean. Let Y represent the typical
die, and X represent the custom die. What is the relationship between Y and X?
We can get the custom die by adding 2 to each side of the typical die, so:

X = 2 + Y

and using the rules of means for constants and addition we have that:

E[X] = 2 + E[Y ] = 2 + 3.5 = 5.5

Example 7.8 shows where “3.5” comes from.

Example 7.10 — The sum of two dice. Often, in games, players roll two dice and take
the sum (backgammon, craps, Monopoly, Catan, Dungeons and Dragons, etc.). In
Monopoly, you move forward a number of spaces equal to the number that you roll
with two dice. How many spaces forward do you expect to move? That is, what is
the mean value of the sum of two dice?

To answer this question, we could either determine the probability function for
the sum of two dice and use Equation 7.1, or we could use the rules of means. Let
X be the result of one of the die rolls, and Y the result of the other. The number of
spaces the game piece moves forward is equal to X + Y . The mean dice roll, using
the rules of the mean, is:

E[X + Y ] = E[X] + E[Y ] = 3.5 + 3.5 = 7

You can expect to move forward 7 spaces. This is an important thing to know if
you gamble or play board games!

7.7.3 Variance

Sample versus population variances. Again, be aware of the difference between the
true population variance (which we are discussing here), and the sample variance
(see Equation 5.3 for sample variance). In this section, the probability functions
are completely known, so that we can use them to determine the variance of the
random variable directly. In cases where there is some question as to the shape of
the probability function, we can use the sample variance to guess or estimate the
true population variance.

The variance of a random variable is a measure of its spread or dispersion. It tells
us how far away the numerical outcomes tend to be, relative to the mean. A higher
variance means that there is a higher probability that the random variable will take on
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values that are far away from the mean or expected value.

Variance of a discrete random variable. Variance is the expected squared difference
of the random variable from its mean. For a discrete random variable Y , the variance
(denoted by σ2

Y or Var[Y ]) is:

Var[Y ] = E[(Y − E[Y ])2] (7.2)

As long as Y is a discrete random variablea, equation (7.2) becomes

Var[Y ] =
K∑
k=1

Pk × (Yk − E[Yk])
2 (7.3)

where Pk is the probability of outcome k occurring, Yk is the numerical value of
outcome k, and K is the total number of (possibly infinite) outcomes. Note that
equation 7.3 is a weighted averaged of squared distances. The variance is measuring
how far, on average, the variable is from its mean. The higher the variance, the
higher the probability that the random variable will be far away from its expected
value.
aWhen the random variable is continuous, equation (7.2) becomes:

Var(y) =

∫
(y − E[y])2f(y) dy

but you don’t need to know this for the course.

Example 7.11 — Variance of a die roll. What is the variance of a die roll, Y ? We
already know that E[Y ] = 3.5, and using Equation 7.3, we have:

Var[Y ] =

K∑
k=1

Pk × (Yk − E[Yk])
2

=
1

6
(1− 3.5)2 +

1

6
(2− 3.5)2 + · · ·+ 1

6
(6− 3.5)2

=
1

6
(6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25)

=
17.5

6
≈ 2.92

This is telling us that we expect the squared distance between the die roll and the
mean value of 3.5 to be equal to 2.92. This is a measure of the dispersion of Y .

7.7.4 Rules of variance

Variance must follow several rules, which are both illuminating and useful in practice.

Rule 1: Variance of a constant

The variance of a constant, c, is zero:

Var[c] = 0

A constant is always the same (it never varies). The distance of the constant from its
mean is always zero.
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Rule 2: Addition

The variance of the sum of two random variables is equal to the sum of the variances,
plus a covariance term (covariance defined later):

Var[X + Y ] = Var[X] + Var[Y ] + 2× Cov[X,Y ]

If the two random variables are independent (the outcome of one does not influence or
affect the outcome of the other), then the covariance2 between them is 0, and:

Var[X + Y ] = Var[X] + Var[Y ]

Since the variance of a constant is zero, adding constants to random variables does not
change the variance:

Var[c+ Y ] = Var[Y ]

Rule 3: Multiplication

The variance of a random variable multiplied by a constant is equal to the square of
the constant multiplied by the variance of the random variable:

Var[cY ] = c2Var[Y ]

The variance rules for the product of two random variables are more complicated and
are not used here.

Rule 4: Non-negativity

Variance cannot be a negative number. Note the “square” in the formula for variance
(Equation 7.2). Since distance from the mean is being squared, we can never get a
negative variance for a random variable Y : Var[Y ] ≥ 0.

Example 7.12 — Variance of a custom die. Consider the custom die from Example
7.9, with sides {3, 4, 5, 6, 7, 8}. Call the result of the custom die roll random variable
X. What is Var[X]? It’s the same as the standard die! That is, Var[X] ≈ 2.92.
This makes sense: the distance between each consecutive outcome is 1, whether
looking at the custom die or the standard die.

We can verify this intuition either using Equation 7.3, or by using the rules of
variance. Again, the relationship between the custom die X, and a standard die
(call it Y ) is: X = 2 + Y . Using the rules of variance:

Var[c+ Y ] = Var[Y ] = 2.92

Adding and subtracting a constant does not affect the variance of a random variable.

Example 7.13 — Variance of the sum of two dice. Take the situation in Example
7.10. What is the variance of the sum of two dice? Call one die X and the other
Y . From the rules of variance:

Var[X + Y ] = Var[X] + Var[Y ] + 2× Cov[X,Y ]

but the dice are independent (the result of one roll cannot influence the other), so

2Covariance is very similar to correlation (see Section 5.10.
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that the covariance between the two dice is 0. So:

Var[X + Y ] = Var[X] + Var[Y ] ≈ 2.92 + 2.92 ≈ 5.83

Example 7.14 — Another custom die. Let’s create another custom die. The sides of
the die will be equal to 2 times the sides of a regular die, so that the six sides read:
{2, 4, 6, 8, 10, 12}. Call the result of this new custom die Z. What is the variance of
Z?

Again, we could use Equation 7.3, or we could make our lives simpler by using
the rules of variance. The relationship between this new custom die, and a standard
die, is: Z = 2× Y . Using the rules of variance, we have:

Var[cY ] = c2Var[Y ] ≈ 22 × 2.92 ≈ 11.7

The values on the traditional die were multiplied by 2, the variance increases by 4.



8. Statistical Inference

Statistical inference. Statistical inference is when a statistic (for example the sample
mean) is used to infer (i.e. “guess” or “estimate”) something about the population.

In this chapter, we put some of what we have learned about statistics and probability
together. This introduction quickly outlines what statistical inference means, and some
key points. We will spend the remainder of the chapter dissecting and explaining the
statements made in this overview. The key point in this chapter is that the sample
mean is a random variable!

You have seen the equation for the sample mean before (see Section 5.1). The
sample mean is found by adding up all values of a variable in the sample, and dividing
by the sample size:

ȳ =
1

n

n∑
i=1

yi (8.1)

where yi denotes the i
th observation, and where n denotes the sample size. The sample

mean is a very popular method for inferring an unknown population mean. Suppose
there is a random variable (call it y), and we want to know the true population mean of
y. The true population mean value for y is denoted µy, and is an unknown parameter.
We can infer1 the value of µy by randomly drawing a sample from the population, and
calculating the sample average. This process is called statistical inference.

Since ȳ is calculated from a randomly selected sample, ȳ is itself a random variable.
ȳ turns out to be Normally distributed, thanks to the central limit theorem (we will
cover the central limit theorem in Section 8.4.1). The mean of ȳ turns out to be the
true population mean! This partly explains why ȳ is such a popular estimator.

We end this introduction with a simulation experiment. We already know from
Example 7.8 that the true population mean of a die roll is 3.5. Let’s pretend, however,
that we don’t know this true population mean. How could we estimate it? We can use

1Instead of using the word “infer”, we could also say “guess” or “estimate”. In fact, ȳ is an “estimator”
for µy.
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the sample mean! First we must collect a sample. We could sit at our desks and roll
a die repeatedly, recording each result. Suppose we only have enough time to collect a
sample of n = 20. Then, we take the sample average of all recorded die rolls. You can
use your own die to accomplish this, or use the following R code to simulate rolling a
die 20 times:

dierolls <- sample(1:6, 20, replace=TRUE)

Take a look at the die rolls (yours will be different):

dierolls

[1] 4 5 3 4 3 6 6 3 2 1 2 1 2 6 2 1 6 5 5 5

and calculate the sample average:

mean(dierolls)

[1] 3.6

If we didn’t know that the true mean die roll is 3.5, we could collect a sample and use
the sample mean to come up with a pretty good guess!

8.1 Parameter versus statistic

One main purpose for calculating a statistic is to represent, guess, or estimate some
feature or characteristic of the population. Suppose we would like to know some true
feature of the population, but it is something that we cannot observe directly (perhaps
because the population is too large!). We could be interested in many different things:
mean, mode, minimum or maximum value, variance, a percentile, etc.

In this chapter, we will focus on the mean of a population, as it is important and
commonly sought after. For example, we may want to know:

� The mean2 income, or the mean years of education, of all Martian colonists.
� The mean height of a human being.
� The mean quantity demanded of Mars diamonds, given prices.
� The mean number of doctor visits for individuals with health insurance.
� The mean sales for Fortune 500 companies.
� The mean temperature and CO2 emissions by country.

Population parameter. A population parameter is a fixed number, often unknown,
that governs the location and shape of a distribution.

There are many other examples, and many reasons for wanting to know the mean
of a population. In each example, we could calculate a sample mean, and use that
sample mean to infer the true population mean. The true expected or mean wage
of a Mars colonist could be estimated using the sample average. It is important to
note the distinction between the true population mean, and the sample mean. The

2Instead of “mean” we could use the word “average” for these examples, but we want to stress that we
are talking about the true mean of the population, and not a “sample average”.
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true population mean income of Mars colonists is µincome, a parameter that determines
the entire population distribution of incomes. It can be considered a fixed number,
unknown to us, but that we desire to discover. The sample mean, ¯income is a statistic
that can be used in place of the unknown µincome.

Statistic. A statistic is calculated from a sample of data, and can be used to estimate
an unknown parameter.

In each of the above examples, we could collect a sample, and calculate a sample
mean in order to infer the unknown population mean. Measuring and averaging the
heights of a sample of humans would allow us to guess at the expected human height.
Observing a few diamond sales allows us to guess at the true quantity demanded for
diamonds. Recording the number of doctor visits made by some randomly selected
individuals would allow us to guess at the overall demand for healthcare.

Population parameter versus statistic. The “things” in the population that we
might wish to know, such as mean, variance, median etc., are determined by pa-
rameters (often denoted with Greek letters, like µ and σ). Parameters are fixed
numbers that govern or characterize the population distribution. In the case of the
Normal distribution, the two parameters µ and σ control the location and shape of
the bell-curve. If we could know the true parameters for any population, we would
have incredible knowledge of the random process that is creating the data that we
observe. Typically however, these population parameters are unknown and must be
estimated. This is where a statistic comes in: a statistic can be used in place of the
true unknown population parameter.

8.2 Population versus sample

In the examples above, it is not feasible to observe the entire population, so that the true
population mean can never be known! How can we estimate the population mean in
situations like these? One method is to collect a random sample from the population,
and then use the information in that sample to estimate the population mean (or
whatever feature of the population we wish to know). Using a statistic (calculated
from a sample) in order to guess or estimate a parameter (from the population), is
called statistical inference.

The difference between populations and samples has already been explained (see
Section 3.2). The sample is a subset of the population, and the individuals or units
that comprise the sample are randomly selected.
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Statistics are random variables!. Since statistics are calculated from the sample,
and the sample is randomly selected from the population, statistics are themselves
random variables! This idea is key to understanding many of the concepts that
follow.

8.2.1 Collecting a random sample

Consider the process of obtaining a random sample for some of the examples listed
above. How might we select the individuals to be included in our sample? If we had
everyone’s social insurance number, we could use a random number generator3 (RNG)
to select as many individuals as we can afford to interview. A good way to obtain a
random sample is by having a list of everyone in the population, and using RNG to
select members for the sample. RNG can be accomplished by flipping a coin, rolling
dice, drawing numbers from a hat, or by using more sophisticated tools like a computer.

Mars colonists

Pretend that we have a list of all 620,136 working-aged Mars colonists. According to our
budget, we can afford to contact 100 individuals. We assign a number to each colonist,
and then use RNG to generate 100 numbers. The selected colonists are contacted,
interviewed, and entered into the sample.

The RNG determined the sample, and any statistics calculated from that sample!
If we were to (hypothetically) repeat the process, we would get a different sample and
different corresponding statistics. Statistics calculated from the sample are random
variables, because the whole process began by randomly selecting a sample through
RNG.

3The closest we can actually get are called pseudo random numbers. We start with a seed, and apply
a complicated process to obtain an unpredictable result.
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Example 8.1 — Random sample of Mars colonists. Begin by downloading a data set
containing information on all 620,136 Mars colonists aged 18 and older (give it a
few minutes, it’s a large data set):

mars18 <- read.csv("http://rtgodwin.com/data/mars18.csv")

Now, pretend that we don’t have this entire data set. This is the entire population - if
we had information on the entire population we would not need statistical inference.
We will simulate sampling from this population. Let’s pretend that our budget
allows us to interview 100 individuals. Draw a random sample of 100 individuals
from the population:

msample <- mars18[sample(1:620136, 100), ]

Take a look at the people in your sample:

View(msample)

Let’s calculate the sample mean income from the randomly drawn sample:

mean(msample$income)

[1] 51686.45

The sample mean value is ¯income = 51, 687. You will get a different sample mean!
This is because your random sample will consist of different colonists. Try the
following lines of code many times:

msample <- mars18[sample(1:620136, 100), ]

mean(msample$income)

Each time you will get a different value for the sample mean of income. We have
just conducted a simulation experiment. In reality, we will only have one sample of
size n = 100 to work with. In this experiment, we are drawing many samples in
order to imagine what else we could possibly calculate for the sample mean. Since
this is an experiment, we also know the population mean:

mean(mars18$income)

[1] 51737.09

How close were the sample averages to the true population mean? It is important
to keep in mind that this is an experiment: in reality we only have one sample, and
we do not know the true population mean.

Height of a human

We could go out into the street at 2 pm and record people’s heights, and obtain a
sample. Since we don’t know who we’re going to meet, the sample is random. But
what if we had decided to go out at 3 pm instead? We would have recorded a different
sample of heights. Any statistics calculated from the two hypothetical samples (2 pm
and 3 pm) would differ, even though the true population height remains unchanged
and is a fixed parameter.
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Figure 8.1: The true population mean is 5 (µ = 5). Each possible random sample y
that we could draw from the population gives us a different sample average (ȳA = 5.2
and ȳB = 4.9 for example). ȳ is a random variable because it is calculated from a
randomly drawn sample.

8.3 The sample mean is a random variable

In this section, we want to emphasize again that the sample mean is a random variable,
along with any other statistic that we might compute using a random sample.

A popular choice for estimating the population mean (denoted by E[y ] or µy) is by
using the sample mean (or sample average, or just average). The sample mean of y
is usually denoted by ȳ. You have seen the equation for the sample mean before (see
Section 5.1):

ȳ =
1

n

n∑
i=1

yi

where yi denotes the ith observation, and where n denotes the sample size.
To reinforce the idea that the sample mean is random, consider the following situa-

tion. You will roll a die 20 times, collect the results, and calculate the sample average,
¯dierolls. What will be the number that you calculate for ¯dierolls? You might guess

that it will be close to 3.5, but you can’t completely predict the result. It is random,
because the sample values {1, 2, 3, 4, 5, 6} are randomly collected.
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When we think about sampling individuals from a population, remember that they
are chosen randomly. Imagine what would happen if we got a different sample, if we
were in a parallel universe, if we collected the sample on a Tuesday instead of a Monday,
etc. The sample values could be different, meaning that anything that is calculated
from the sample could be different. See Figure 8.1 for a visualization of this idea.

8.4 Distribution of the sample mean

Figure 8.2: Histogram of sample means: simulated sampling distribution for the sample
mean of 20 die rolls.

An important question is: how good is the estimator? That is, how good of a job
is the estimator doing at “guessing” the true unobservable thing in the population? In
our specific example: how good is the sample mean at estimating the true population
mean of heights? This is an importannt question, because there are many ways that
we could use the information in the sample to try to estimate the true mean. Why is
equation (8.1) so popular?

The fact that a statistic is a random variable has important implications for statis-
tical inference. If we are using the sample mean to estimate the population mean, we
might wonder: “how well does the sample mean represent the true population mean?”
One way to answer this question is to consider the distribution of the sample mean.
It’s a random variable after all, and it has a distribution!

Let’s start from the fact that the sample mean, ȳ, is random. What is the dis-
tribution for ȳ? Remember that the probability distribution for a random variable
accomplishes two things: (i) it lists all possible numerical values that the random vari-
able can take, and (ii) assigns probabilities to ranges of values. So, what are the possible
values that ȳ can take? How likely is ȳ to take on certain values? Ideally, we would
like to know the exact location and shape of the probability distribution for ȳ.

Before we proceed, let’s define the term sampling distribution. When the random
variable is an estimator (such as the sample mean), then its probability distribution
gets a special name - sampling distribution. That is, a sampling distribution is just a
fancy name for the probability function of an estimator.
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The sampling distribution is a hypothetical construct. It describes the probability
of all outcomes for ȳ, but in the real world we only get one sample and one estimate ȳ.

Sampling distribution. Imagine that you could draw all possible random samples of
size n from the population, calculate ȳ each time, and construct a relative frequency
diagram (a histogram) for all of the ȳs. This relative frequency diagram would be
the sampling distribution of the estimator ȳ for sample size n.

This definition of the sampling distribution can be approximated using a computer.
Instead of “all possible samples” we can use a computer to draw many many samples of
size n from a population, and calculate and record ȳ each time. Let’s return to the die
rolling experiment. Let y be the result of a die roll. We collected a sample of n = 20
die rolls, giving us one sample mean ȳ = 3.6. The sampling distribution for ȳ can be
simulated by collected a sample of n = 20 die rolls 1 million times (or as many times
as you like), calculating and recording ȳ each repetition:

nrep <- 1000000

allmeans <- numeric(nrep)

for(i in 1:nrep) {

dierolls <- sample(1:6, 20, replace=TRUE)

allmeans[i] <- mean(dierolls)

}

hist(allmeans)

The histogram from this R code is shown in Figure 8.2. Notice that there were a few
“weird” samples drawn, where the sample mean was calculated to be very low or high,
but this happens rarely. Most of the sample means from the experiment tend to be
centered between 3 and 4. What is the exact location of this distribution? In fact, we
can find this location by taking the sample mean of all 1 million ȳ:4

mean(allmeans)

[1] 3.498985

Wow, the value of 3.499 is very close to the true population mean die roll of 3.5! So,
even though the possible values for ȳ can be all over the place, on average they give
the correct answer! In this example, the expected value of the sample mean is exactly
equal to the true population mean: E[ȳ = µy, which is part of the reason why ȳ is a
popular statistic.

Unbiased estimator. When the expected value of the estimator is equal to the true
population parameter intended to be estimated, the estimator is said to be “unbi-
ased.” The sample mean, ȳ is an unbiased estimator (under certain assumptions).

Returning to Figure 8.2, what shape characterizes the histogram? It is the familiar
Normal distribution, or bell curve! Figure 8.3 shows a Normal distribution super-
imposed onto the histogram of ȳ for die rolls. In fact, the sample average ȳ always
(approximately) follows a Normal distribution, regardless of the distribution of the
variables in the sample! This is due to the central limit theorem.

4It may be confusing to take the sample mean of sample means. Just focus on the fact that ȳ is a
random variable. It is natural to try to find the mean and variance of a random variable.
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Figure 8.3: Normal distribution with µ = 3.5 and σ2 = 0.145, and histogram simulating
the sampling distribution for the sample mean of 20 die rolls.

8.4.1 The central limit theorem

No matter what distribution the random process follows, when we start adding up
random variables, the resulting sum is Normally distributed. We can even add different
types of random variables. It only matters that we add up enough. If the random
outcomes that we seek to model are the results of many random factors all added
together, then the central limit theorem applies. This is a casual explanation of the
CLT; there are several conditions required for it to hold, and several versions.

Central limit theorem. Loosely speaking, the central limit theorem (CLT) says that
the sums of random variables are Normally distributed.

To illustrate the CLT, let’s again use dice for an example. We know that a single die
roll is uniformly distributed (equal probability of each number coming up). But what
if we start adding the results of dice rolls? Figure 8.4 shows the probability function
for the sum of two dice. It’s no longer flat (uniform)! It even seems to have a bit of a
curve to it.

Now, let’s add a third die, and see if the probability function looks more normal.
Let Y = the sum of three dice. It turns out the mean of Y is 10.5 and the variance is
8.75. The probability function for Y is shown in Figure (8.4). Also in Figure (8.4) is
the probability function for a Normal distribution with µ = 10.5 and σ2 = 8.75. Notice
the similarity between the two probability functions.

The CLT says that if we add up the result of enough dice, the resulting probability
function should become Normal. Finally, we add up eight dice, and show the probability
function for both the dice and the Normal distribution in Figure(8.4), where the mean
and variance of the normal probability function has been set equal to that of the sum
of the dice.
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Figure 8.4: Probability function for the sums of dice, with Normal density functions
superimposed. As the number of random variables that we sum increases, the distri-
bution of the sum becomes Normal. This is due to the central limit theorem (CLT).

CLT and ȳ. So, what does the CLT have to do with the sample mean? Look at Equa-
tion 8.1 again. Notice the summation Σ operator. Taking a sample average involves
adding up random variables, so the CLT means that ȳ is randomly distributed.



9. Confidence intervals

This chapter discusses how to construct and interpret confidence intervals. Confidence
intervals are very easy to calculate but very difficult to understand, and are commonly
misinterpreted.

One of the uses of a confidence interval is to quantity the uncertainty surrounding
the estimate ȳ. Confidence intervals can be calculated along with the calculation of ȳ,
provided a measure of how “close” ȳ might be to the true population mean µy.

The first part of the chapter lays down the groundwork necessary to understand
confidence intervals. Sampling distributions, estimators, and the variance of estimators,
are some of the required concepts that we begin with.

9.0.1 Simplifying assumptions

In statistics textbooks, it is customary to begin discussion of confidence intervals, hy-
pothesis tests, and test statistics, by assuming that the population variance is known.
This is a simplifying, but very unrealistic assumption. It is unrealistic because confi-
dence intervals and hypothesis tests are used when the population mean is unknown.
If the population mean (µ) is unknown, then the population variance (σ2) is usually
unknown as well.

In a later chapter, we tackle the more realistic situation that σ2 is unknown. In
this more realistic case, confidence intervals and hypothesis tests are altered slightly,
but the overall principle and interpretation remains the same.

In this chapter, we will be using the result that the sample average follows a Normal
distribution: ȳ ∼ N . Usually, this Normal distribution is only an approximation to the
true distribution of ȳ, and the approximation only works well when the sample size n
is large. In some of the examples, we will only have a sample size of n = 10. This is too
small for the Normal approximation to work well in practice, but we still use a small
sample for simplicity in some the examples. Be aware: the Normal approximation only
works well for large n!
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Assumptions.

� The population mean µy is unknown and must be estimated using ȳ.
� The population variance σ2

y is assumed to be known (unrealistic, but simplifying
assumption).

� n should be large for the Normal approximation to work well. We use examples
with n = 10 for simplicity, but n = 10 is too small in reality.

9.1 Sample mean and population mean

In previous chapters, we have learned that we can use the sample mean to estimate an
unknown population mean. Below we summarize some important differences between
sample mean and population mean.

Sample mean ȳ Population mean µy

Can be calculated from a sample of
data.

Is usually unknown (except for things
like coins or dice, see Example 7.8).

Is a random variable. Is a fixed parameter (just a number).

Has an approximate Normal proba-
bility distribution. We use “sampling
distribution” instead of “probability
distribution” when talking about a
statistic.

Doesn’t have a probability distribu-
tion (because it’s a constant).

Since the sample mean is a random variable, we can consider probabilities of ȳ taking
on certain values. For example, we could try to determine: P (ȳ > 4) for a sample of
dice rolls, or P (80k ≤ ȳ ≤ 90k) for a sample of Mars incomes. As long as we know the
distribution for ȳ, we can determine these probabilities by taking the area under the
probability distribution (density) curve. So, what is the exact sampling distribution
(probability distribution) for ȳ?

9.2 Exact sampling distribution of ȳ

In Section 8.4 we introduced the idea that since the sample mean is a random variable
it has a probability distribution (renamed sampling distribution since ȳ is a statistic).
In Section 8.4.1 we said that ȳ follows the Normal distribution due to the central limit
theorem. In the current section, we use the sampling distribution of ȳ to calculate the
probability of getting an “extreme” sample average. An “extreme” sample average is
one that is far away from the true population mean1. This idea is related to confidence
intervals, and also leads to hypothesis testing (which is covered in the next chapter).

The sampling distribution of ȳ.

ȳ ∼ N

(
µy ,

σ2
y

n

)

1What constitutes “extreme” and “far away from the truth” is subjective.
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This says that ȳ is Normally distributed with mean µy and with variance σ2
y/n. The

mean of ȳ is the same as the mean of y. The variance of ȳ is whatever the variance
of y is, divided by n.

This sampling distribution of N(µy, σ
2
y/n) is only valid in certain situations. The

sample size n has to be large enough for the central limit theorem to provide a Normal
distribution, and the y data must be identically and independently distributed (which
is assured if the y data was collected by simple random sampling).

Taking the distribution of ȳ as N (µy, σ
2
y/n), it is easy to calculate the probability of

getting various values for ȳ, provided µy and σ2
y are known!

Example 9.1 — Probability of getting a ȳ > 4. Suppose that you are about to roll 10
dice, and take the sample average ȳ. We know that the sample average “should”
give us an answer that is close to 3.5 (the true mean of a die roll). What is P (ȳ > 4)?
That is, what is the probability that we get some “extreme” value for the sample
average? We now know that the sample average (approximately) follows the Normal
distribution with mean µy and variance σ2

y/n. From Example 7.8 we know that the
mean of a die roll is 3.5:

µy = 3.5

From Example 7.11 we know that the variance of a die roll is:

σ2
y =

35

12
≈ 2.92

The sample size is going to be n = 10, so the variance of ȳ is:

σ2
y

n
=

35/12

10
≈ 0.292

Putting this together, we have that the sampling distribution for the sample average
of 10 die rolls is:

N(3.5, 0.292)

We can now get R to draw this Normal distribution, and calculate the area under
the curve to the right of 4. This area tells us the probability of getting a ȳ that is
“extreme”, or greater than 4. The R code for calculating this probability is:
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pnorm(4, mean = 3.5, sd = sqrt(0.292), lower.tail = FALSE)

[1] 0.1774071

The pnorm() function calculates an area (a probability) under the Normal curve.
The first argument in the function is 4: we want P (ȳ > 4). Next we give the function
the mean and standard deviationa so that we draw the correct curve: mean = 3.5

and sd = sqrt(0.292). Finally, we tell the function that we want the “upper tail”
(the area to the right of 4), so we set lower.tail = FALSE.

So, there is only a 17.7% probability of getting a ȳ > 4 when we average 10 dice!

aRemember that standard deviation is just the square root of the variance.

Example 9.2 — Number of times getting a ȳ > 4. In the previous example (Example
9.1) we found that if we were to roll 10 dice, and take the sample average, that:

P (ȳ > 4) = 0.177

One way of interpreting this probability of 0.177 is that, of all the samples of
n = 10 die rolls that we could obtain, 17.7% will give a sample average higher than
4. This can easily be verified! Roll 10 dice, take the average. Repeat this many
times. 17.7% of sample averages calculated should be above 4. Instead of actually
rolling dice, we can use R:

roll <- sample(1:6, 10, replace=TRUE)

mean(roll)
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[1] 3.9

Repeat the above code many times, and you will see that roughly 17.7% ȳs are
above 4!

9.3 Accuracy of ȳ increases with n

The variance of ȳ is:

var(ȳ) =
σ2
y

n

Variance measures the “spread” of a random variable. The formula shows that as n
gets larger, the variance of ȳ decreases. ȳ gets more accurate with a bigger n! This is
one of the reasons we want the sample size n to be as large as possible. As we collect
more information in the sample, the sample average gets “better”. This is true for
many other statistics as well, such as the median or mode.

Example 9.3 — Variance of ȳ for increasing n. The sample average ȳ is a random
variable that (approximately) follows the Normal distribution, with mean µy, and
variance σ2

y/n. Notice the n in the denominator. This means that as the sample size
grows, the sample average gets more accurate. In other words, a larger sample size
reduces the probability of getting an “extreme” value for the sample average.

For different sample sizes let’s calculate the variance of ȳ, and the probability
of getting a ȳ > 4. In Example 9.1 we found that if we were to take the sample
average ȳ of 10 dice, the variance of ȳ would be:

σ2
y

n
=

35/12

10
≈ 0.292

Where 35/12 is the variance of a single die roll. If we were to instead roll 20 dice and
take the average, the variance of ȳ would be:

σ2
y

n
=

35/12

20
≈ 0.146

This gives us the sampling distribution for ȳ when n = 20: ȳ ∼ N(3.5, 0.146). The
probability of getting a ȳ > 4 is similarly found by calculating the area under the
N(3.5, 0.146) curve, to the right of ȳ = 4. R can do this for us:

pnorm(4, mean = 3.5, sd = sqrt(0.146), lower.tail = FALSE)

[1] 0.09534175

The probability of getting a ȳ that is “far away” from the true mean of 3.5 is getting
smaller as n increases! Let’s try one more time for 40 dice.

σ2
y

n
=

35/12

40
≈ 0.073

pnorm(4, mean = 3.5, sd = sqrt(0.073), lower.tail = FALSE)
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[1] 0.03211478

sample size var(ȳ) P(ȳ > 4)

10 0.292 17.7%
20 0.146 9.5%
40 0.073 3.2%

The Normal curves, and P (ȳ > 4), for n = 10, 20, 40, are shown above.

9.4 Sampling distribution of ȳ with unknown µ

The sampling distribution of ȳ is:

ȳ ∼ N

(
µy ,

σ2
y

n

)

The problem is, in reality µy is usually not known!2 We need to calculate ȳ as a way of
estimating the unknown true population mean µy. So, in reality we don’t know where
the sampling distribution is “centered”. That is:

ȳ ∼ N

(
? ,

σ2
y

n

)

How can we calculate probabilities involving ȳ? We need to locate the sampling distri-
bution before we can do so.

2Our dice examples are an exception.
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Figure 9.1: An “actually” calculated value for the sample mean ȳACT is used to locate
the sampling distribution, since the true location µy is typically unknown.

What is our best guess for the unknown population mean µy? It’s ȳ! We can
estimate the sampling distribution for ȳ by replacing the unknown µy with a value
that we “actually” calculate for the sample average. Call this value ȳACT , where ACT
stands for a number that we actually calculate:

ȳ ∼ N

(
ȳACT ,

σ2
y

n

)

The idea of replacing the unknown parts of the sampling distribution with estimated
numbers is the beginning step in constructing confidence intervals, and performing
hypothesis tests.

Example 9.4 — An estimated sampling distribution. Suppose that we do not know
that the true mean of a die roll is µy = 3.5! We can estimate this unknown mean
using the sample average, and use it for confidence intervals and hypothesis tests.
A typical way of proceeding is to:

1. Collect a sample.
2. Calculate ȳ to use as an estimate for µy.
3. Use ȳ in place of µy in the sampling distribution, in order to calculate confi-

dence intervals and hypothesis tests.

Begin by collecting a sample. Roll 10 dice:

set.seed(2040)

roll <- sample(1:6, 10, replace=TRUE)

roll

[1] 1 4 5 2 6 6 6 4 1 6

Here we used set.seed(2040) so that all the randomly generated numbers will be
the same no matter who runs the code! Next, use this sample to calculate ȳACT :
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Random seed. Random number generation begins with a “seed”. Complicated
formulas are applied to the seed, so complicated that we can’t predict the re-
sult. This generates “pseudo” random numbers. If we do not choose a seed, the
computer default is to use the system time.

mean(roll)

[1] 4.1

Lastly, we can calculate probabilities of getting different values for ȳ, by using the
N
(
ȳACT , σ2

y/n
)
distribution. In Example 9.1 we calculated the probability of getting

an “extreme” ȳ. Let’s calculate the probability that, if we were to draw another
sample of size n = 10, that the ȳ we calculate from this sample is within ±1 of
ȳACT . That is, we want: P(3.1 ≤ ȳ ≤ 5.1). To get this probability, we use a Normal
distribution with µ = 4.1 and σ2

y/n = 2.92/10 = 0.292.
Notice that P(3.1 ≤ ȳ ≤ 5.1) = P(ȳ ≤ 5.1) − P(ȳ ≤ 3.1). We calculate two

probabilities in R, and subtract:

pnorm(5.1, mean = 4.1, sd = sqrt(0.292))

- pnorm(3.1, mean = 4.1, sd = sqrt(0.292))

[1] 0.9357704

This tells us that, if the true population mean were 4.1, there would be a 93.6%
chance of calculating a ȳ between 3.1 and 5.1 with a new sample of size n = 10.
These types of probability statements, involving what would happen if we could hy-
pothetically recalculate ȳ with a new sample, forms the basis for confidence intervals
and hypothesis testing.

9.5 Confidence intervals

Statistical inference typically includes some measure of the uncertainty surrounding
the actual estimate. A confidence interval accomplishes this task. It is an interval
surrounding an estimate (such as ȳ), that reflects “accuracy”. The wider the interval,
the less confident we are about how well ȳ represents or is “close” to the true µy.

Measuring uncertainty surrounding an estimate, such as by using a confidence in-
terval, relies on knowing the distribution of the estimator. Luckily, in Section 9.4, we
determined the distribution of ȳ to be:

ȳ ∼ N

(
µy ,

σ2
y

n

)

and said that we can replace the unknown µy with an actual value for ȳ:

ȳ ∼ N

(
ȳACT ,

σ2
y

n

)

Now, consider the following question:
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Figure 9.2: Solving for “lower value” and “upper value” provide the 95% confidence
interval around ȳACT .

Which interval around ȳACT has a 95% probability of containing a new ȳ?

To answer this question, we could draw the N
(
ȳACT ,

σ2
y

n

)
distribution, put 95% of the

area in the middle, and figure out the lower and upper bounds. See Figure 9.2.

Example 9.5 — Confidence intervals using R. Returning to an earlier dice example
(Example 9.4):

n = 10

ȳ = 4.1

σ2
y = 2.92

σ2
y/n = 0.292√
σ2
y/n = 0.54

The estimated sampling distribution for ȳ is N(4.1, 0.292). We can use R to find
the lower value, that puts 2.5% of the area under the curve to the left:

qnorm(.025, mean = 4.1, sd = 0.54)

[1] 3.040894

Find the value that puts 2.5% of the area under the curve to the right:

qnorm(.025, mean = 4.1, sd = 0.54, lower.tail = FALSE)

[1] 5.159106

These two values define the confidence interval around ȳACT : [3.04 , 5.16].

In addition to using R (Example 9.5), we can also find the 95% confidence interval
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using:

lower value = ȳ − 1.96×
√

σ2
y

n

upper value = ȳ + 1.96×
√

σ2
y

n

or:

95% confidence interval.[
ȳ − 1.96×

√
σ2
y/n , ȳ + 1.96×

√
σ2
y/n
]

(9.1)

The number 1.96 in Equation 9.1 is coming from the Standard Normal distribution:
N(0, 1) (see Section 6.4.3). In a Standard Normal distribution, 2.5% of the area in the
“tails” is located outside of the values -1.96 and 1.96.

Instead of drawing out the N
(
ȳACT , σ2

y/n
)
distribution and calculating areas, Equa-

tion 9.1 uses the values ȳACT and σ2
y/n in order to transform the distribution to the

Standard Normal distribution N(0, 1), where the number 1.96 is well known. Essen-
tially, we are “standardizing”3 ȳ: creating a different variable that instead follows
N(0, 1), and using what we know about N(0, 1) (that ±1.96 puts 95% area in the
middle).

Example 9.6 — Confidence intervals using Equation 9.1. Returning to earlier dice
examples (Examples 9.4 and 9.5):

n = 10

ȳ = 4.1

σ2
y = 2.92

σ2
y/n = 0.292√
σ2
y/n = 0.54

Calculate the 95% confidence interval using Equation 9.1:

95% CI =
[
ȳ − 1.96×

√
σ2
y/n , ȳ + 1.96×

√
σ2
y/n
]

= 4.1± (1.96× 0.54)

= 4.1± 1.06

= [3.04 , 5.16]

This is the same confidence interval from Example 9.5!

9.5.1 Standard error

The “standard error” is the standard deviation of an estimator. The special name
“standard error” is used instead of “standard deviation” when referring to an estimator
in particular, rather than just any random variable. The sample standard error is used
to calculate confidence intervals and perform hypothesis tests. The standard error of
ȳ, for example, is often abbreviated s.e.(ȳ).

3Standardization will be covered in detail in the next chapter.
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Standard error.
√

σ2/n is called the “standard error” of ȳ, abbreviated s.e.(ȳ).

9.5.2 Interpreting confidence intervals

So we have calculated an interval around ȳ, but what does it all mean? There are
several ways to interpret a 95% confidence interval:

� There is a 95% probability that a 95% confidence interval will contain the true
µy.

� 95% of such intervals constructed in this way will contain the true µy.
� We are confident that 95% of the time, the interval contains the truth.

Figure 9.3: Each hypothetical sample of size n that we could draw (sample A, sample
B, etc.) provides a 95% confidence interval that has a 95% probability of containing the
true population mean µy. In reality, we will only draw one sample from the population,
and calculate one sample mean and interval. The confidence interval provides a measure
of the uncertainty surrounding ȳ.

The confidence interval is itself a random interval. The randomness all begins with
the random sample. From the random sample we get ȳ, which is a random variable.
From ȳ we get the confidence interval. Since ȳ is random, so must be the confidence
interval.

It turns out that there is a 95% probability that we will draw a sample that leads to
a 95% confidence interval containing µy. Of all the possible samples that we could draw
from the population, 95% of them will produce 95% confidence intervals that contain
the truth.

How not to interpret a confidence interval

Some misconceptions on how to interpret confidence intervals persist. The following
interpretations are wrong :

� There’s a 95% probability that the true µy lies inside the 95% confidence interval.
� The 95% confidence interval contains the true µy 95% of the time.

These interpretations are subtly wrong. The reason is that the interval is random,
and µy is a fixed parameter, not the other way around.

Margin of error

The distance in the confidence interval, on either side of ȳ, is sometimes called the
margin of error. That is:

95% margin of error = 1.96×
√

σ2/n

The term “error” is in keeping with the idea that the confidence interval is measuring
the uncertainty surround an estimate.
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9.5.3 The width of a confidence interval

From the equation for the 95% confidence interval:

ȳ ± 1.96×
√

σ2
y/n

we can see several factors that will effect the width or size of the interval:

� The number “1.96”. This number is associated with a 95% confidence level. A
90% confidence level will make the interval narrower, and a 99% confidence level
will make the interval wider.

� The sample size n. As n grows, ȳ becomes more accurate, and confidence intervals
narrow.

� The population variance σ2
y . If there is more variance in the population, then ȳ

becomes less accurate and confidence intervals widen.

Notice that ȳ only determines the location of the interval, not it’s width.

Example 9.7 — Effect of a larger n. In Example 9.6 we calculated a 95% confidence
interval from a sample of size n = 10. Let’s take another sample from the same
population, but with n = 20. From Section 9.3 and Example 9.3, we know that
the accuracy of ȳ increases for larger n. This should be reflected in a narrower
confidence interval when n = 20.

In fact, the width of the confidence interval is determined by the margin of error,
not the actual value for ȳ. The width of the interval is:

2×
(
1.96×

√
σ2
y/n
)

As long as we are sampling from the same population so that σ2
y is constant, then

the width of the confidence interval only depends on n. From the dice examples,
where the true variance of a die roll is σ2

y = 35/12, the margin of error from a 95%
confidence interval using n = 20 will be:(

1.96×
√

(35/12)/20
)
= 0.749

so that any 95% confidence interval calculated by sampling n = 20 from this popu-
lation will just be:

ȳ ± 0.749

Comparing this to the 95% confidence interval from when n = 10:

ȳ ± 1.06

we can see that doubling the sample size decreases the width of the confidence
interval by a factor of

√
2.

9.5.4 Confidence level

Common confidence levels are 90%, 95%, and 99%, but any confidence level may be
chosen. A confidence level determines the probability that a confidence interval will
contain the true population parameter (µy). We can use R to find the “critical values”
that correspond to these confidence levels. For a 99% confidence interval:



9.5 Confidence intervals 103

qnorm(.005, mean = 0, sd = 1)

[1] -2.575829

In the qnorm() function we chose the area .005. This calculates the value for a Standard
Normal variable that puts 0.5% area in the left tail. This gives 1% area in both tails,
hence 99% area in the middle. Similarly, for the 95% critical value, we put 2.5% area
in the left tail of the distribution:

qnorm(.025, mean = 0, sd = 1)

[1] -1.959964

and finally for the 90% confidence interval:

qnorm(.05, mean = 0, sd = 1)

[1] -1.644854

Figure 9.4: Standard Normal distribution. “Critical values” of ±2.58, ±1.96, and
±1.65 are used to construct 99%, 95%, 90% confidence intervals (respectively). These
numbers can be used when ȳ (at least approximately) follows a Normal distribution.

These critical values are depicted in Figure 9.4. Using these values, we can construct
confidence intervals with varying levels of confidence:

99% CI = ȳ ± 2.58×
√

σ2
y/n

95% CI = ȳ ± 1.96×
√

σ2
y/n

90% CI = ȳ ± 1.65×
√

σ2
y/n

Example 9.8 — Confidence intervals for Mars incomes. Let’s calculate 99%, 95% and
90% confidence intervals using the sample of Mars colonists. In this chapter, we are
operating under the unrealistic assumption that the population variance is known.
Since the Mars data is fake (I generated it), in this example we can know what the
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true population variance is. Load up the entire population of 720,720 colonists:

wholepop <- read.csv("http://rtgodwin.com/data/marsregistry.csv")

This will take awhile since the file is large! Now that we can unrealistically “see”
the entire population, we can get the population variance of income for “employed”
individuals:

var(wholepop$income[wholepop$occupation == "employed"])

[1] 1452833175

So, the true population variance is σ2
income = 1.4 billion. Now, pretend that we do

not have any other information on the population other than σ2
income = 1.4 billion.

Let’s use the sample of n = 1000 colonists, calculate the sample mean income
¯income, and construct the confidence intervals.

sample <- read.csv("http://rtgodwin.com/data/mars.csv")

mean(sample$income)

[1] 80938.1

Let’s calculate the “standard error” first, to make things easier:

s.e.(ȳ) =
√

σ2/n =
√

1452833175/1000 = 1205.335

and now for the confidence intervals:

99% CI = 80938.1± 2.58× 1205 = [77829 , 84047]

95% CI = 80938.1± 1.96× 1205 = [78576 , 83299]

90% CI = 80938.1± 1.65× 1205 = [78950 , 82926]



10. Hypothesis testing

In this chapter, we introduce hypothesis testing. Hypothesis testing involves assessing
statements made about unknown population parameters. One of the unknown popu-
lation parameters that we have been focusing on in this book is the population mean
µy. For example, we might hypothesize that the true population mean height of U of
M students is 173 cm, that the mean income of Mars colonists is 82000, or that GDP
growth is 2% per year. A hypothesis test uses the information in the sample to assess
the plausibility of such statements. Having knowledge of the sampling distribution of
ȳ, which is our estimator for the unknown part of the hypothesis test µy, is the key to
conducting a hypothesis test.

In this chapter, we are maintaining the unrealistic assumption that the population
variance σ2

y is known. We relax this assumption in the next chapter.

10.1 Null and alternative hypotheses

In general, a hypothesis test begins with a null hypothesis, and an alternative hypoth-
esis:

H0 : µy = µy,0

HA : µy ̸= µy,0

H0 is the null hypothesis. The null hypothesis is “choosing” a value for the unknown
population mean, µy. The hypothesized value of the population mean is denoted µy,0.
The alternative hypothesis is denoted by HA. One of the two situations must occur.
This is called a “two-sided” hypothesis test: the null hypothesis is wrong if the popu-
lation mean (µy) is either “too small” or “too big” relative to the hypothesized value.

The hypothesis test concludes with either: (i) “reject” H0 in favour of HA, or (ii)
“fail to reject” H0. We should never say that we “accept” either of the hypotheses: we
either have evidence to reject H0, or we do not have enough evidence to reject H0.

The decision to “reject” or “fail to reject” H0 may begin by the researcher subjec-
tively deciding on a significance level and then doing one or more of the following:
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� Calculating a (p-value) and comparing it to the significance level.
� Seeing whether or not µy,0 is contained in a confidence interval.
� Calculating a test statistic and seeing if it exceeds a critical value.

We’ll use the example of the incomes of Mars colonists in order to illustrate hy-
pothesis testing. Suppose that the Mars government claims that the population mean
income of employed Mars colonists is 82,000. Let’s begin by formally stating the null
and alternative hypotheses:

H0 : µincome = 82000

HA : µincome ̸= 82000
(10.1)

If we think the government is lying, we will reject their claim. This is a “two sided”
hypothesis test; the government is lying if the true income is either greater than or less
than 82000.1

10.2 Distribution of ȳ assuming H0 is true

“Classical” hypothesis testing (as we are doing here), begins by making the assumption:

Hypothesis Testing Assumption 1. The null hypothesis is correct (H0 is true).

The hypothesis test concludes by re-evaluating this assumption. If this assumption
appears to be incorrect, we “reject” the null hypothesis. We make an additional as-
sumption for this chapter:

Hypothesis Testing Assumption 2. The true population variance is known. For the
Mars income example, this means that σ2

income is assumed to be known.

Now, consider this important question:

What is the distribution of the sample average, assuming that the null hypothesis
H0 is true?

The sample average, ¯income, has a Normal distribution with mean equal to µincome,
and variance equal to σ2

income/n. That is:

¯income ∼ N

(
µincome ,

σ2
income

n

)
If H0 is true, then µincome = µincome,0. In our example, this would mean that µincome =
82000 and:

¯income ∼ N

(
82000 ,

σ2
income

n

)
Using our unrealistic assumption that the population variance is known, we also have
that σ2

income/n = 1452833. We can draw the sampling distribution for the sample mean,
assuming that the null hypothesis H0 is true. See Figure 10.1. We can also use this
sampling distribution to calculate the probability of drawing a sample that leads to an
“extreme” or “weird” sample average, like we did in Example 9.1.

1We cover one-sided hypothesis tests in Section 10.6.
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Figure 10.1: Sampling distribution of the sample average income ¯income if H0 :
µincome = 82000 is correct. 2 × 19% = 38% is the probability of getting a “worse”
sample average, and is called the p-value.

Example 10.1 — Probability of an extreme sample average assuming H0 true. Assume
that H0 : µincome = 82000 is true. What is the probability of getting ¯income <
80000? We need to calculate the area under the N (82000 , 1605382) curve, to the
left of 80,000:

pnorm(80000, mean = 82000, sd = sqrt(1452833))

[1] 0.04852874

If the population mean income is truly 82000, then there is only a 4.9% chance that
¯income < 80000.

10.3 p-values

After stating H0 and HA, the next step is to actually estimate the parameter (µy

for example) that the hypothesis is about. A p-value can then tell us whether the
difference between the what we hypothesis (H0 : µy,0) and what we actually observe
from the sample (ȳ) is “large” enough to warrant rejection of the hypothesis.

For example, to test whether µincome = 82000 or not, we proceed by estimating
the unknown µincome. In several examples using a sample of n = 1000 employed Mars
colonists we have calculated that:

¯income = 80938

Notice that our estimate of 80938 is clearly different from our hypothesis that the
true population mean is 82000. The difference between what we actually estimated
from the sample, and our null hypothesis, is 82000− 80938 = 1062. Just because there
is a difference does not imply we should reject H0 outright. We need to assess whether
this difference is “large”. Assessing whether the difference is large can be accomplished
using a p-value. We will only reject H0 if the probability of getting an ¯income (from
another hypothetical sample drawn from the population) further away than 1062, is
small. This probability is called a p-value.
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p-value. A p-value is the probability of getting a new (hypothetical) estimate that
is more adverse to the null hypothesis than the estimate just calculated, assuming
the null hypothesis is true.

By “more adverse” we mean a difference ȳ − µy,0 that is even larger than the differ-
ence calculated with our given sample. If H0 is actually true, then the probability of
calculating a sample average that is more “extreme” than the one we just calculated is
two times2 the probability that ¯income < 80938, using the N (82000, 1605382) curve.
From R, this probability is:

2 * pnorm(80938, mean = 82000, sd = sqrt(1452833))

[1] 0.3782731

This is the p-value for our example hypothesis test. It tells us that, if H0 is true,
there is a 38% chance of getting a sample that would lead to an ¯income that is fur-
ther away from 82000 than the sample average of 80883 that was just calculated.
That is, out of all the hypothetical samples of n = 1000 that we could draw from
an N (82000, 1452833) distribution, 38% would give a sample average further than
82000− 80883 = 1117 from H0.

All that remains is to decide whether the p-value of 38% is “large” or “small”. This
decision is subjective. With a p-value of 38%, most researchers would decide to “fail
to reject” the null hypothesis.

Hypothesis testing decision rule.

� If the p-value is large, we “fail to reject” H0. A large p-value indicates that
there are many worse estimates (e.g. ȳs) that we could calculate, relative to
H0, if H0 is actually true. A large p-value indicates that the sample average is
“close” to H0.

� If the p-value is small, we “reject”H0 in favour ofHA. A small p-value indicates
that there are few sample averages that we could observe that are more extrem,
ifH0 is actually true. A small p-value indicates that the sample average is “far”
from H0.

� If the p-value is greater than the significance level, then the p-value is consid-
ered large. That is, if p-value < α, reject H0.

10.4 Significance of a test (α)

At what point should we decide that the p-value is too small, such that we should reject
the null hypothesis? The choice is somewhat arbitrary, and is up to the researcher (you).
Standard choices are 10%, 5%, and 1%. A pre-decided maximum p-value under which
H0 will be rejected is called the significance level of the test. It is sometimes denoted by
α. In the Mars income example, we would fail to reject the null at the 10% significance
level. Note that failing to reject at the 10% level implies that we also fail to reject H0

at the 5% and 1% significance levels.

2We multiply by 2 because it is a two-sided hypothesis test.
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10.4.1 Type I error

Take another look at Figure 10.1. Suppose that the null hypothesis is true and Figure
10.1 is the correct sampling distribution for ¯income. We could still randomly draw a
weird sample that makes H0 appear to be “wrong”. That is, even when the null is true,
some of the hypothetical samples we could draw would give an ¯income that is far from
the truth. In these cases, we will erroneously reject the null. If the null hypothesis is
falsely rejected, it is called a type I error. Type I error is the probability that H0 is
rejected when the null is true:

P(type I error) = P(reject H0 | H0 is true) = α

How do we determine what this type I error will be? As soon as we pick the
significance of the test, it has been determined. That is, type I error = α. If we always
pick a 5% significance level, we will make a type I error in 5% of hypothesis tests. That
is, if we conduct thousands of scientific studies where we always use α = 5%, in 5% of
those studies where we reject the null, we will be doing so falsely.

In reality, we do not know the population values, so we will never know if we have
made a type I error or not. Type I error tells us nothing about the particular sample
that we are working with. It only tells us something about what happens through
repeated applications of our testing procedure.

10.4.2 Type II error

There is another type of error we can make. There are two possibilities for H0: either
it is true or false. In type I error, we considered that H0 is actually true. If we consider
that H0 is actually false, then we make a type II error when we fail to reject. The
probability of a type II error is:

Pr(type II error) = Pr(fail to reject H0 | H0 is false)

If H0 is actually false, one of two things can happen: we “reject” or we “fail to
reject”. The probabilities of both of these events must sum to 1 (something must
happen). So:

Pr(1− type II error) = Pr(reject H0 | H0 is false) (10.2)

Equation (10.2) is called the power of the test. We want the power to be as high as
possible. That is, we do not want to make a type II error, and we want the probability
of rejection to be as high as possible when H0 is actually false.

Determining the type II error (and power) of a test is difficult or impossible. This is
because power depends on knowing the unobservable population. The concept is useful,
however, when we are trying to find the “best” test available (which is not covered in
this book).

10.4.3 Trade-off between type I and II errors

We choose the significance (α) of the test (e.g. either 1%, 5%, or 10%). Type I error is
equal to α. So why don’t we just choose α to be really small, in order to minimize our
type I error? The answer is that there is a trade-off between type I error and type II
error. Generally, as type I error decreases, type II increases. A small α means that the
sample mean can be far away from the null hypothesis before it is rejected. Confidence
intervals get wider. It becomes more difficult to reject the null hypothesis, whether it
is true or false.
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10.5 The z test statistic

A test statistic is a convenient way of measuring the difference between the null hy-
pothesis and what is actually estimated. Test statistics provide an alternative way of
obtaining a p-value. If we want to use the above testing procedure in different situa-
tions, we would have to “graph” a different Normal curve (similar to the one in Figure
10.1) each time, in order to calculate the area under the curve to get the p-value. His-
torically, calculating an area under the Normal curve was difficult (now it is easily done
in R). Consequently, a method was devised so that every testing problem could use the
same distribution: the Standard Normal (see Section 6.4.3. Historically, areas under
the Standard Normal curve were tabulated to provide p-values without the need for
integration or a computer. One of these tables is reproduced in Table 10.1.

The z -statistic is obtained by standardizing. To standardize a variable, we subtract
its mean and divide by its standard deviation. If the variable we begin with is Normal,
then this process creates a new Normal random variable from the old one, which follows
the N(0, 1) distribution. For example, let y ∼ N(µy, σ

2
y). We standardize by creating

a new variable z where:

z =
y − µy

σy

Now, z is still Normally distributed, but has mean 0 and variance 1 since:

E[z] = E[y − µy] = E[y]− µy = µy − µy = 0

and:

Var[z] = Var

[
y

σy

]
=

Var[y]

σ2
y

=
σ2
y

σ2
y

= 1

(refer to the rules of mean and variance in Sections 7.7.2 and 7.7.4).
How is standardization helpful for hypothesis testing? The sampling distribution of

ȳ under the null hypothesis is ȳ ∼ N(µy,0, σ
2
y/n). Create a new variable z. Subtract µy,0

(the mean of ȳ if the null is true) from ȳ. z has mean 0 (if the null is actually true).
Divide by the standard error (standard error = the standard deviation of an estimator)
of ȳ, and z has variance of 1. That is:

z =
ȳ − µy,0√

σ2
y/n

∼ N(0, 1)

This is the “z -test statistic” for the null hypothesis that µy = µy,0. If the null is
true, then z should be “close” to 0. The probability of observing a ȳ further away from
H0 than what we just observed from the sample is obtained by plugging ȳ and µy,0

into the z statistic formula, and calculating a probability using the Standard Normal
distribution. From our Mars incomes example, the z statistic is:

z =
80938− 82000√

1452833175
1000

= −0.881

Now, the question:
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“What is the probability of getting further away than 80938 from the null hypothesis
of 82000?”

has just been translated to:

“What is the probability of an N(0, 1) variable being less than -0.881, or greater
than 0.881?”

Get this probability from R:

2 * pnorm(-0.881, mean = 0, sd = 1)

[1] 0.3783178

It is the same p-value that we obtained in Section 10.3! We only need to calculate the
area under the curve for several possible z values. These were tabulated long ago, and
are reproduced in Table 10.1.

Example 10.2 — Hypothesis on Mars incomes - z test.

State the null and alternative hypotheses.

H0 : µincome = 82000

HA : µincome ̸= 82000

Choose the significance level.

Let’s choose α = 5%.

Collect a sample.

Load the sample of 1000 employed Mars colonists:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

Estimate the population parameter in the hypothesis.

We calculate ¯income, which is an estimator for the unknown µincome:

mean(mars$income)

[1] 80938.1

Calculate the z test statistic.

z =
80938.1− 82000√

1452833175
1000

= −0.881

Calculate the p-value.

The Normal distribution is symmetric, so we can look up the value 0.881 (instead
of -0.881) in Table 10.1. The number in the table is 0.1894. Multiplying by 2 (since
it’s a two sided test), gives a p-value of 0.3788. Instead of the table we can get the
p-value from Standard Normal distribution in R:

2 * pnorm(-0.881, mean = 0, sd = 1)



10.6 Two-sided vs. one-sided hypothesis tests 112

[1] 0.3783178

Make a decision.

Since the p-value is greater than the significance level, we fail to reject H0. There
is insufficient evidence to reject the claim that µincome = 82000. Note that we also
reject the null at the 10% significance level.

10.5.1 Critical values

Critical values are the most extreme values allowable for the test statistic, before the
null hypothesis is rejected. Suppose that we choose an α = 5% significance level for
our test. This means that if we receive a p-value that is less than 0.0250 in Table 10.1,
we should reject the null hypothesis (since 2.5%×2 = 5%). If we use Table 10.1 to find
the z statistic that corresponds to a significance level, we are finding the critical value
for the test. According to Table 10.1, we see that a p-value of 0.0250 corresponds to a
z statistic of 1.96. This is the 5% critical value. We know that if the z statistic that
we calculate for our test ends up being greater than 1.96 or less than -1.96, we will get
a p-value that is less than 0.05, and we will reject the test.

A rejection rule. In a two-sided hypothesis test, H0 is rejected at the 5% significance
level if |z| > 1.96.

10.5.2 Confidence intervals again

Given a significance level α, the 1− α% confidence interval may be used to “reject” or
“fail to reject” a null hypothesis. For example, a 95% confidence interval can be used
to conduct a hypothesis test at the 5% significance level. An alternative interpretation
of the 95% confidence interval is:

Confidence interval. The 95% confidence interval contains all of the values for µy,0

(all values for the null hypothesis) that will not be rejected at 5% significance.

If the null hypothesis is in the 1− α% confidence interval, we will “fail to reject” that
null hypothesis at the α% significance level.

10.6 Two-sided vs. one-sided hypothesis tests

So far, we have only considered two-sided hypothesis tests. An alternative is a one-sided
hypothesis test, which takes the form:

H0 : µy > µy,0

HA : µy ≤ µy,0

or:

H0 : µy < µy,0

HA : µy ≥ µy,0

On one side of µy,0 the null is true, on the other side it’s false. For a one-sided test,
we only calculate the area under the curve on one side of the Normal distribution. In
many instances throughout the chapter we multiplied the area under the Normal curve
by 2: this is because we were conducting a two sided hypothesis test. For a one sided
test, we do not multiply by 2.
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Table 10.1: Area under the Standard Normal curve, to the right of z.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002



11. Hypothesis testing with unknown σ2

In this chapter, we tackle the situation where the population variance σ2 is unknown.
If we want to perform hypothesis testing, we need to estimate this variance. So far our
confidence intervals, test statistics, and p-values all rely on the unknown value σ2:

confidence interval for ȳ ȳ ± zc ×
√

σ2
y

n

z test statistic (ȳ − µy,0) /

√
σ2
y

n

p-value Calculated by using the distribution
of z (and z requires σ2

y)

Note that we have written the confidence interval using zc, instead of 1.96 (for
example). When σ2

y is known, zc = 1.96 for the 95% confidence interval. This “1.96”
is coming from the Standard Normal distribution. In this chapter, zc will change to tc,
once we estimate σ2

y .
We will replace the unknown σ2 with an estimator, s2. We will discuss how confi-

dence intervals, test statistics, and p-values are altered slightly when we substitute the
unknown σ2 with the estimator s2.

11.1 Estimating σ2

So far we have assumed that σ2
y is known. After calculating ȳ, we needed this σ2

y for
confidence intervals, test statistics, and p-values. Hypothesis testing relies on knowing
the population variance σ2.

If we have to estimate µy, it is unlikely that we would know σ2
y . That is, if the

population mean is unknown, it is likely that the population variance is unknown as
well. Equation 11.1 provides a way of estimating the unknown σ2

y .
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Sample variance of y.

s2y =
1

n− 1

n∑
i=1

(yi − ȳ)2 (11.1)

A discussion of this formula (including where the n− 1 comes from), along with exam-
ples, were presented in Section 5.7 (review this section now). Review Example 5.11 to
see how to use R to calculate the sample variance.

All instances where we used σ2 can use s2 instead, with some minor modifications:

confidence interval for ȳ ȳ ± tc ×
√

s2y
n

t test statistic (ȳ − µy,0) /

√
s2y
n

p-value Calculated by taking an area under
the t-distribution

Replacing σ2 with s2. The reason why confidence intervals and hypothesis testing
changes is because we are replacing a parameter (σ2) with a random estimator (s2).
s2 has its own sampling distribution. Introducing another element of randomness
into confidence intervals and hypothesis testing has the effect of changing the relevant
underlying distributions slightly.

Where we used the Standard Normal distribution before for confidence intervals and
hypothesis testing, we should now use the t-distribution.

11.2 t-distribution

The t-distribution (in place of the Standard Normal distribution) can be used in the
calculation of confidence intervals, p-values, and for hypothesis testing in general. See
Section 6.5 for a review of the t-distribution. It is the appropriate distribution when σ2

is replaced by the estimator s2 in the formula for the z -statistic. Whereas the z -statistic
follows the Standard Normal distribution:

z =
ȳ − µy√

σ2
y

n

∼ N(0, 1)

the t-statistic follows the t-distribution:

t =
ȳ − µy√

s2y
n

∼ t(n−k)

The only difference is that σ2 has been replaced with s2, but introducing the random
estimator s2 into the equation changes the distribution of z. The t-distribution is
denoted t(n−k). It is very similar to the N(0, 1) distribution, but it has fatter tails. It is
symmetric and centered at 0. The shape of the t-distribution depends on the degrees
of freedom (n− k), where n is our sample size, and k (in this case) is 1.
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Relationship between the t-distribution and Standard Normal. As the sample size
n grows, the t-distribution becomes identical to the Standard Normal distribution.
The developments in this chapter can essentially be ignored when the sample size n
is large enough. That is, the Standard Normal distribution is an approximation to
the t-distribution, and the approximation gets better as n increases.

11.3 Confidence intervals using s2

When we use s2 instead of σ2, the “critical value” used in the confidence interval can
no longer come from the Standard Normal distribution. Instead of using the critical
value for a z score (zc), we must instead use a critical value from the t-distribution (tc):

ȳ ± tc ×

√
s2y
n

In the previous chapters, recall that if we wanted a 95% confidence interval the critical
value (zc) was found by finding the values on the x-axis that put 2.5% area in each tail
of the N(0, 1) distribution (see Figure 9.4). The 95% critical value using a Standard
Normal distribution can be found in R using:

qnorm(.025)

[1] -1.959964

This is where the number “1.96” in the confidence interval formula comes from. The
95% critical value using the t-distribution can be found in R using:

qt(.025, 19)

[1] -2.093024

Try increasing the number “19” in the command qt(.025, 19). You will see that
the critical value produced approaches 1.96. This number is the “degrees of freedom”
(n− k) for the t-distribution. The “19” would correspond to a sample size of n = 20.
For a sample this size, we can see that the confidence interval will be quite a bit wider
under the t-distribution compared to the Standard Normal distribution. This is always
the case: confidence intervals using the t-distribution are always wider than those using
the Standard Normal.

Example 11.1 — Confidence intervals for Mars incomes - unknown s2. This example
mimics Example 9.8, but here we use s2 instead of σ2 and the t-distribution instead
of the Standard Normal distribution. Let’s calculate the 95% confidence intervals
around the sample mean income of Mars colonists. In this chapter, we are operating
under the realistic assumption that the population variance is unknown.

Using the sample of n = 1000 colonists, calculate the sample mean income
( ¯income):

sample <- read.csv("http://rtgodwin.com/data/mars.csv")

mean(sample$income)
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[1] 80938.1

Let’s calculate the “standard error” first, to make things easier:

sqrt(var(sample$income) / 1000)

[1] 1267.037

So,
√

s2income/n = 1319. Next we need the critical value from the t999 distribution:

qt(.025, 999)

[1] -1.962341

The critical value of 1.96 is a value that we have become accustomed to. This critical
value from the t-distribution is nearly identical to that from the Standard Normal.
This is because the sample size of n = 1000 is large enough that the t-distribution
is approximately Normal. Finally, we can calculate the confidence interval:

95% CI = 80938.1± 1.96× 1267 = [78455 , 83421]

We will see in Example 11.2 that the confidence interval can be generated automat-
ically in R using the t.test() function.

11.4 The t-test

Now that we know how to estimate σ2
y , we can estimate the variance of the sample

average using:

Estimated variance of ȳ =
s2y
n

We can implement hypothesis testing by replacing the unknown σ2
y with its estimator

s2y. The z test statistic now becomes:

t =
ȳ − µy,0√

s2y
n

This is the t statistic. Because we have replaced σ2
y with s2y (a random estimator) in

the z statistic formula, the form of the randomness of z has changed. The t statistic is
no longer a standard normal variable. It follows its own probability distribution, called
the t-distribution. When performing a t test, the p-values are different than in Table
10.1 (those obtained from the Standard Normal distribution). However, as the sample
size grows, the t-distribution becomes the standard normal distribution. This means
that, for sample sizes of approximately n > 100, using the standard normal distribution
(Table 10.1) instead of the t distribution, makes very little difference.

Example 11.2 — Hypothesis on Mars incomes - t test. This example mimics Example
10.2, in which σ2 was assumed to be known.
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State the null and alternative hypotheses.

H0 : µincome = 82000

HA : µincome ̸= 82000

Choose the significance level.

Let’s choose α = 5%.

Collect a sample.

Load the sample of 1000 employed Mars colonists:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

Estimate the population parameter in the hypothesis.

We calculate ¯income, which is an estimator for the unknown µincome:

mean(mars$income)

[1] 80938.1

Estimate the population variance.

We calculate s2income, which is an estimator for the unknown σ2
income:

var(mars$income)

[1] 1605382317

Calculate the t-test statistic.

t =
80938− 82000√

1605382317
1000

= −0.838

This is somewhat close to the value of the z test statistic in Example 10.2 (-0.881).

Calculate the p-value.

We can look up the value 0.838 in Table 10.1 to get an approximate p-value. The
number in the table is 0.2005. Multiplying by 2 (since it’s a two sided test), gives
a p-value of 0.4010 (compared to 0.378 in Example 10.2). Get a p-value from the
t-distribution using R:

2 * pt(-0.838, 999)

[1] 0.4022311

The p-value for this test is 0.402. The “999” in pt(-0.838, 999) is the degrees of
freedom (n− k = 1000− 1).

Using the R function t.test()

Use R to accomplish all of the above, in one command:

t.test(mars$income, mu=82000)
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One Sample t-test

data: mars$income

t = -0.8381, df = 999, p-value = 0.4022

alternative hypothesis: true mean is not equal to 82000

95 percent confidence interval:

78451.74 83424.45

sample estimates:

mean of x

80938.1

The same p-value of 0.402 was found above. Notice that t.test() also provides
the 95% confidence interval. The null hypothesis is inside this confidence interval,
so we will end up failing to reject H0 at the 5% significance level (at least).

Make a decision.

Since the p-value is greater than the significance level, we fail to reject H0. There
is insufficient evidence to reject the claim that µincome = 82000. Note that we also
reject the null at the 10% significance level.



12. Least-squares regression

This chapter introduces least-squares regression, which is a way of modelling and quan-
tifying the relationship between two or more variables. In the preceding chapters, we
have mostly considered methods of analysis that deal with only one variable. In many
cases in economics (and other subjects), we want to know how much a change in one
variable might be associated with, or cause, a change in another variable.

12.1 The least-squares regression line

Figure 12.1: Scatter plot of x and y.

How might you quantify the relationship between two variables? The relationship
between an x and a y variable is depicted in Figure 12.1 (see Section 4.7 for a review
of scatter plots). Download the data from Figure 12.1, and reproduce the scatter plot
yourself:
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data <- read.csv("http://rtgodwin.com/data/ls1.csv")

plot(data$x, data$y)

Looking at Figure 12.1, there appears to be a strong, positive, and linear relationship
between x and y. One way to quantify this linear relationship is by using the correlation
coefficient:

cor(data$x, data$y)

[1] 0.8919703

Another way to quantify, or model, the relationship between x and y is by drawing or
“fitting” a straight line through the scatter plot (see Figure 12.2):

plot(data$x, data$y)

abline(lm(data$y ~ data$x))

Figure 12.2: A least-squares line has been “fitted” through the scatter plot of x and y.

The line in Figure 12.2 is called a least-squares regression line. The term “regres-
sion” refers to taking the information from all of the data points and “regressing” or
reducing it to a single line. If the vertical distances between the data points and the
line are just random “noise”, then the relationship between x and y can be represented
by the regression line (provided we make a few other assumptions, for example that
the relationship is linear).

12.2 Equation of the least-squares regression line

The least-squares line from Figure 12.2 is defined by an intercept and a slope. A
common way to write the equation of a line is:

y = a+ bx

where y and x are variables, a is the “intercept” of the line, and b is the “slope” of
the line. Often in econometrics we instead use the symbol b0 for the intercept, and b1
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for the slope1. Since there is some randomness involved such that the data points in
Figure 12.2 are scattered around the regression line, we will write the equation of the
line in terms of ŷ instead of y:

ŷ = b0 + b1x

The variable ŷ is the least-squares predicted y value, which we will explain in Section
12.5. The values for the intercept b0 and the slope b1 can be calculated using the lm()2

function in R:

lm(data$y ~ data$x)

Call:

lm(formula = data$y ~ data$x)

Coefficients:

(Intercept) data$x

18.264 2.071

From the R output, the intercept for the line in Figure 12.2 is b0 = 18.3. The slope of
the line is b1 = 2.1. The line in Figure 12.2 is written as:

ŷ = 18.3 + 2.1x

12.3 Interpreting the least-squares regression line

The least-squares regression line is defined by its intercept b0 and its slope b1. The
intercept b0 is the value for y when x = 0. Often, the intercept is not very interesting.
The slope, however, is the change in y associated with a change in x of 1 unit3. The
slope b1 is sometimes called the estimated marginal effect of x on y:

∆ŷ

∆x
= b1

If the x variable is thought to cause the y variable, then b1 is the estimated causal
effect. It tells us how much y will change if we change x by 1 unit. This is very
powerful knowledge, and very useful if we have control over the x variable, but we can
never know if an x variable causes a y variable using statistics. Causation is a very
strong statement and very difficult to determine. At the very least, we can say that b1
represents the change in y associated with a change in x. So, in our example above, for
b1 = 2.1, we can say that an increase in x of 1 unit is associated with an increase in y
of 2.1 units. Similarly, a decrease in x of 1 is associated with a decrease in y of 2.1.

In most of the examples and figures in this book, the least-squares regression line
happens to have a positive slope, but the line can just as easily have a negative slope.
If the value for b1 is negative, then an increase in x is associated with a decrease in y,
and vice versa.

Figure 12.3 shows a situation where the least-squares regression line has a nega-
tive slope. The value b1 = −1.79 means that for a 1 unit increase in price, quantity
demanded decreases by 1.79 on average.

1In the next chapter we will introduce a population intercept and slope, and will denote them using β0

and β1.
2“lm” stands for “linear model”.
3This interpretation is only valid when x is a continuous variable, and not, for example, a dummy
variable.



12.4 Formula for the intercept and slope of the regression line 123

Figure 12.3: Mars completely controls the price of alcohol, and has experimented with
different prices to see how colonists respond with their quantity of drinks demanded.
The slope of b1 = −1.79 is the average decrease in drinks when Mars government
increases the price of alcohol by 1.

12.4 Formula for the intercept and slope of the regression line

How are the least-squares regression lines in Figure 12.2 and 12.3 “fitted”? That is,
how are b0 and b1 chosen? As the name implies, the “least-squares” regression line
has something to do with minimizing squared values. In particular, the line is chosen
such that the sum of all of the squared vertical distances between the regression line
and data points is minimized. “Least” refers to minimizing, and “squares” refers to
squaring the distance between the points and the regression line.

Figure 12.4: Least-squares residuals.

Each of these vertical distances is called a “residual”. There is one residuals for
each data point, and we refer to a single residual as ei. See Figure 12.4. The formulas
for b0 and b1 can be found by solving a calculus minimization problem (which is beyond
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this course):

b1 =

∑n
i=1 [(yi − ȳ) (xi − x̄)]∑n

i=1 (xi − x̄)2

b0 = ȳ − b1x̄

(12.1)

Equation 12.1 tells us how to use the x and y data in such a way to pick the intercept
and slope of a line that passes closely through the data points, by minimizing the sum
of all of the squared vertical distances.

12.5 Predicted values and residuals

A least-squares predicted value is the value for y that we get if we “plug” in a value for
x into the equation y = b0 + b1x. For example, say that we substitute x = 100 into the
fitted line in Figures 12.2-12.4. Substituting x = 100 into the least-squares regression
line we get:

ŷ = b0 + b1x = 18.3 + 2.1x

ŷ = 18.3 + 2.1(100) = 225.4

Figure 12.5: Least-squares predicted value for when x = 100.

Least-squares predicted values are denoted ŷ (pronounced “y hat”). A predicted
value will always lie on the least-squares regression line. See Figure 12.5.

We can also take all of the original values for the x variable, plug all of them into
the least-squares regression line, and get n “in sample” predictions. These predicted
values are called the least-squares fitted values. There is one fitted value for each data
point.

The fitted values ŷ, for when we use the original x data, don’t quite coincide with
the actual y values. See Figure 12.6. The differences between the two are the least-
squares residuals, which we have already mentioned above. The least-squares residuals
are prediction errors, and can be calculated by the equation:

e = y − ŷ
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Figure 12.6: Actual value, fitted value, and residual.

The sum of all of these squared residuals is the very thing that the least-squares re-
gression line minimizes.

Now that we have defined the least-squares residuals, we can write a new equation
for the y variable:

y = b0 + b1x+ e (12.2)

Equation 12.2 says that each y value has a predictable part (b0 + b1x), and an unpre-
dictable part that cannot be explained (e)

12.6 R-squared

R-squared (R2) is a “measure of fit” of the least-squares regression line. It is a number
between 0 and 14. R2 indicates how close the data points are to the regression line.
R-squared is the portion of sample variance in the y variable that can be explained by
variation in the x variable.

The assumption is that changes in x are associated with or are leading to changes
in y. But, changes in x are not the only reason, or explanation, for changes in y. There
are unobservable variables that are leading to changes in y, otherwise all of the data
points in the scatter plot would line up exactly in a straight line. R2 helps answer the
question: how much of the change in y is coming from x? Some equivalent ways of
interpreting R2 are:

� How well the estimated model explains the y variable.
� How well changes in x explain changes in y.
� How well the estimated regression line “fits” the data.
� The portion of the sample variance in y that can be explained using the estimated
model.

40 ≤ R2 ≤ 1 as long as there is an intercept b0.
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To get the R2 using R5, we need to put the lm() function inside of the summary()
function in order to get some more information about the “fitted” regression line:

summary(lm(data$y ~ data$x))

Call:

lm(formula = data$y ~ data$x)

Residuals:

Min 1Q Median 3Q Max

-32.811 -12.356 -1.758 9.887 55.437

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.2636 15.6668 1.166 0.249

data$x 2.0712 0.1515 13.669 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.01 on 48 degrees of freedom

Multiple R-squared: 0.7956, Adjusted R-squared: 0.7914

F-statistic: 186.8 on 1 and 48 DF, p-value: < 2.2e-16

In this R output, make sure you can find the intercept and slope (b0 = 18.2636, b1 =
2.0712). There is quite a bit of information provided, including R2 = 0.79566. This
value can be interpreted as: 79.6% of the variation in y can be explained using the x
variable.

R-squared provides a measure of the predictive power of the fitted least-squares
regression line. The higher the value of R2, the more power x has for explaining or
predicted values of y. A low value for R2 does not mean that x is insignificant, however.
Whether or not x is significant in explaining changes in y is better left to a hypothesis
test (covered in the next chapter).

12.6.1 R2 and correlation

The value of R-squared from a least-squares line for x and y is closely related to the
correlation between x and y: R2 is the square of the correlation. The interpretation of
R2 is thus very similar to that of correlation; both are measuring the strength of the
association between two variables. Note that due to the “squaring”, R2 does not tell
us the direction of the relationship between the two variables (i.e. either positive or
negative).

R2 becomes more important when we add additional variables to the model, that is,
when we are working with more than just two variables. In such a case, the correlation
coefficient is not useful in assessing the overall “fit” or predictive power of the least-
squares model.

5The measure of fit R-squared (R2) and the R statistical environment (the application we are using to
perform econometrics) are completely unrelated.

6“Multiple R-squared” can be used when we only have one x variable. When there is more than one x
variable in the model, we should use the “Adjusted R-squared”.
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12.7 Three algebraic facts of least-squares regression

Three algebraic facts of least-squares regression emerge, simply as a consequence of
minimizing the squared vertical distances between the data points and the regression
line7.

1. The least-squares residuals sum to zero.
2. The regression line passes through the sample means of the data (the line passes

through x̄ and ȳ).
3. The sample mean of the least-squares predicted values is equal to the sample

mean of the actual y data (¯̂y = ȳ).

These facts become important when we delve into more advanced topic in econometrics.
These three results can be proven mathematically, but in this text we only illustrate
that they are true via Example 12.1.

Example 12.1 — Three least-squares facts illustrated. We’ll illustrate the three results
using the data from Figures 12.1 - 12.6. Load the data into R, and in this example
we’ll suppress scientific notation:

data <- read.csv("http://rtgodwin.com/data/ls1.csv")

options(scipen = 999)

Next, estimate the least-squares line and save it as “ls.line”:

ls.line <- lm(data$y ~ data$x)

From the saved object ls.line we can extract the residuals and the in-sample
predicted or fitted values. To illustrate result (1), save the residuals and check that
they sum to zero (or are at least very close to zero):

resids <- residuals(ls.line)

options(scipen = 999)

sum(resids)

[1] 0.0000000000001425526

To illustrate fact number (2), get the predicted or fitted values, and check that the
mean of the fitted and actual y values are equal (¯̂y = ȳ):

yhat <- predict(ls.line)

mean(yhat)

mean(data$y)

mean(yhat)

[1] 229.5679

yhat <- predict(ls.line)

mean(data$y)

[1] 229.5679

To verify fact (3), we can plot the point (x̄, ȳ), draw the least-squares regression

7There are rare situations where the intercept b0 is excluded from the model. In this case, these
properties do not necessarily hold.
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line, and see the line passing through the point:

plot(mean(data$x), mean(data$y))

abline(ls.line)

12.8 Least-squares regression example

Load the per country, per capita CO2 and GDP data that was used in Figure 4.12:

data <- read.csv("http://rtgodwin.com/data/co2.csv")

The idea here is that GDP per capita is associated with per capita CO2 emissions.
We’ll fit a least-squares line through the data, which will give us b1. Then, b1 will tell
us how an increase in GDP is associated with an increase in CO2 emissions. We don’t
know if GDP causes CO2 emissions (or vice versa); such causal statements are beyond
the scope of this statistical analysis.

To make the interpretation of b1 easier, measure GDP per capita in 1000s of dollars:

data$gdp <- data$gdp.per.cap / 1000

Now, estimate the least-squares regression line, and get some “summary” information:

summary(lm(data$co2 ~ data$gdp))

Call:

lm(formula = data$co2 ~ data$gdp)

Residuals:

Min 1Q Median 3Q Max

-11.8964 -1.0479 -0.6367 0.0841 28.2401

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.49730 0.45799 1.086 0.28

data$gdp 0.33110 0.02675 12.380 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.945 on 132 degrees of freedom

Multiple R-squared: 0.5373, Adjusted R-squared: 0.5338

F-statistic: 153.3 on 1 and 132 DF, p-value: < 2.2e-16

Plot the data, and add the least-squares regression line to the plot (see Figure 12.7):

plot(data$gdp, data$co2, col = "blue",

ylab = "CO2 emissions per capita", xlab = "GDP per capita")

abline(lm(data$co2 ~ data$gdp), col = "red")

The slope of the least-squares regression line is b1 = 0.33. This can be interpreted as:
an increase in per capita GDP of $1000 is associated with an increase in per capita
CO2 emissions of 0.33. The R-squared of 0.54 tells us that per capita GDP explains
54% of the variation in per capita CO2 emissions between countries.

Note that it would be better to fit a regression line through the logs of per capita
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Figure 12.7: Per capita CO2 and GDP, with fitted least-squares regression line

GDP and CO2 emissions (see Figure 4.13). Doing so would give b1 a percentage change
interpretation. Using logs in a least-squares regression is a more advanced topic that
is left out of this text.



13. Least-squares continued

13.1 The linear population model

The least-squares estimators (b0 and b1) of the previous chapter are estimators for un-
known parameters in a linear population model. The linear population model expresses
a possible true (and ultimately unobservable) relationship between y and x. The rea-
sons for thinking in terms of a true population model are the same as for the true
population mean and population variance. In earlier chapters, we differentiated the
sample mean (ȳ) and sample variance (s2) from the true unknown population values:
µ and σ2. This allows us to view the sample mean and sample variance as estimators
for something that is unknown, and is a required concept for the view that estimators
(like ȳ) are random variables that have sampling distributions. In turn, the sampling
distributions allow us to conduct hypothesis testing (and derive statistical properties
of the estimators, which is beyond this book).

The linear population model is often written as:

y = β0 + β1x+ ϵ (13.1)

Once again Greek letters (β) are being used to denote unknown population parameters.
β0 and β1 are expressing a true linear relationship between y and x. The least-squares
intercept (b0) and slope (b1) from the previous chapter are just estimators for β0 and
β1. The terms β0, β1, and ϵ are unobservable components of the model. Typically, the
goal is to use the y and x data in order to estimate β0 and β1, which can be tricky
given the random “noise” introduced through ϵ.

An observable counterpart to the linear population model has already been shown
in Section 12.5:

y = b0 + b1x+ e

The least-squares regression model “replaces” the unobservable components of the lin-
ear population model: β0 → b0, β1 → b1, and ϵ → e

In the linear population model, the slope β1 has a very important interpretation. It
represents the true change in y associated with a 1 unit change in x. If there is a causal
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relationship between y and x, then β1 is the true marginal effect of x on y. Much
of applied economics is focused on estimating the effect of one variable on another.
Statistical methods for estimating β1 are vital.

13.2 The random error term ϵ

An important component of the linear population model is the random error term ϵ
(Greek letter epsilon). Equation 13.1 says that y is determined, or generated, by a value
for x. The quantity β0 + β1x is the deterministic (non-random) part of the model; ϵ is
the random part.

It may be helpful to envision the unknown data generating process for y (the way
in which a y value is created). For example, suppose a value for x is chosen: this
determines the quantity β0 + β1x. Then, a random number (ϵ) is drawn, and added to
β0+β1x to determine the value for y. The same x value, when plugged into the model,
could generate different y values depending on the randomly drawn epsilon. However,
by making certain assumptions about the random ϵ, we can say that the population
line β0 + β1x provides the mean, or expected value, of y.

Sometimes the random error term reflects measurement error, but usually in econo-
metrics the random error term (ϵ) is thought to encompass all variables (besides x) that
determine or cause the y variable. When we think of examples of y and x variables it
is likely that we can think of many factors that determine y other than just x. There
are potentially hundreds or thousands of other variables that might be associated with
y. If we cannot observe these other variables, they are contained in the random error
term. Thus, the random error term is the sum of all of the effects on y that other
variables might have. Some examples of variable effects that might be contained in ϵ
are shown in Table 13.1.

Table 13.1: Examples of variable effects contained within ϵ.

y variable x variable other factors that determine y
(represented in ϵ)

wage years of education age, work experience, race, gender,
IQ, economic and social factors, min-
imum wage laws, family characteris-
tics, personality

happiness score GDP per capita social support, life expectancy, free-
dom, corruption, trust in neighbours,
government ideologies

CO2 emissions GDP per capita industrialization, urbanization, tech-
nological progress, population den-
sity, temperature

Random error term ϵ. The linear population model contains a random error term ϵ.
The error term encapsulates all variables that determine y, besides x. ϵ contains the
effects of many variables acting on y, all summed together into one term.
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13.3 Five least-squares assumptions

The successfulness of the least-squares estimators (b0 and b1) at estimating the true
population model (β0 and β1) relies on the properties of the random error term (except
property 5). In this section, we identify some of the conditions that are often required
in order for the least-squares method to be considered suitable. In particular, for
least-squares to work well, we need:

1. ϵ to be uncorrelated with x
2. ϵ to be identically and independently distributed (i.i.d.)
3. ϵ to be Normally distributed
4. ϵ is mean zero (E[ϵ] = 0)
5. the relationship between y and x should be linear in β0 and β1

The first requirement, that ϵ and x be uncorrelated, is the most important. Correla-
tion between x and ϵ has serious implications for estimating β1. To complicate matters,
it is difficult or impossible to tell if there is a relationship between the unobservable
ϵ and x. Requirements (2)-(4) are usually considered to be less important. If (2) or
(3) are not satisfied then alternative models or refinements to the basic least-squares
method may be used. Requirement (4) only affects estimation of β0, which is typically
not of interest. If property (5) is untrue, then least-squares cannot be used to estimate
the relationship between y and x.

Requirements (1) - (5) are collectively known as the “least-squares assumptions”.
These assumptions are mentioned in this book because they will become of greater
import in more advanced econometrics courses. Some of these assumptions can be
checked, the easiest of which being assumption (3) - the Normality of the error term ϵ.
One strategy for testing assumptions about ϵ is to examine the least-squares residuls
(e), since the properties of e should mimic those of the unobservable ϵ.

13.3.1 Testing the Normality of the error term

The assumption that the random error term follows a Normal distribution is required
in order for the t-test (and other tests not covered) to be valid. If the random error
term ϵ is Normally distributed, then so should be the residuals e from the least-squares
estimation of the population model. In this section, without going into detail we look
at two ways to test the Normality of the error term by examining the residuals; the
Jarque-Bera test and a Normal Q-Q plot (quantile-quantile plot).

Jarque-Bera test

In the Jarque-Bera test, the null and alternative hypotheses are:

H0 : ϵ is Normal

HA : ϵ is not Normal

The test is based on comparing the sample skewness and kurtosis of a sample variable,
to the true skewness and kurtosis of a Normally distributed variable (which should be
0 and 3 respectively). Similar to Example 12.1, we can begin by getting the residuals
from a least squares model:

data <- read.csv("http://rtgodwin.com/data/ls1.csv")

ls.model <- lm(data$y ~ data$x)

resids <- residuals(ls.model)
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Next, we need to install and load the tseries package into R, which contains the
Jarque-Bera test:

install.packages("tseries")

library("tseries")

Finally, we apply the Jarque-Bera test to the residuals from our least-squares regression:

jarque.bera.test(resids)

Jarque Bera Test

data: resids

X-squared = 3.7476, df = 2, p-value = 0.1535

Since the p-value is greater than 0.1, we fail to reject the null hypothesis at the 10%
significance level. In this model, the assumption that the random error term is Normally
distributed seems plausible.

Q-Q plot

A quantile-quantile plot compares the sample quantiles1 of a variable to the theoretical
quantiles of the Normal distribution distribution (or any other distribution). The Q-Q
plot is a visual diagnostic tool. If the sample quantiles, plotted against the theoretical
quantiles, appear to follow a straight line, then the variable is thought to be Normally
distributed. To generate a Q-Q Normal plot in R, we can use the qqnorm function,
along with qqline in order to draw a straight line through the plot.

qqnorm(resids)

qqline(resids)

The plot generated by the above R code is shown in Figure 13.1. Most researchers
would conclude that the Q-Q plot supports the conclusion of the Jarque-Bera test: the
residuals appear to be Normally distributed, indicating that the Normality assumption
for ϵ is reasonable.

13.4 Hypothesis testing and confidence intervals

In Chapters 10 and 11 we made hypotheses regarding the unobservable population
mean µ, and used the sample mean ȳ to test these hypotheses. In this section, we
make hypotheses about β1, and test the hypotheses using b1. The general framework
of hypothesis testing, and the interpretation of p-values, remains unchanged.

Once again, we begin the hypothesis test by stating the null and alternative hy-
potheses:

H0 : β1 = β1,0

HA : β1 ̸= β1,0

The 0 subscript in β1,0 denotes the value for β1 under the null hypothesis. We could
also make hypotheses about β0, but usually the focus is on β1. We can use the t-test

1(See Section 5.4 on quartiles and percentiles, which are similar to quantiles.
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Figure 13.1: Q-Q Normal plot. If the variable is Normally distributed, then the sample
quantiles should “line up” with the theoretical quantiles from the Normal distribution.

to perform hypothesis tests involving the β in the linear population model. In Section
11.4, the t-test statistic used for hypotheses on the population mean µ was:

t =
ȳ − µy,0√

s2y
n

There are three components to this formula: an estimator, a hypothesized value,
and the standard error of the estimator. In the context of the linear population model,
these components respectively become: the least-squares estimator (b1), the value for
β1 under the null hypothesis, and the standard error of b1 (denoted s.e.(b1)

2). A generic
formula for the t test statistic is:

t =
estimate− hypothesized value

standard error
(13.2)

See Table 13.2 for a comparison of notation for the t test statistic, between hypotheses
involving the population mean µ, and the slope β1 in the linear population model.

Table 13.2: Examples of variable effects contained within ϵ

population mean µ population slope β1

estimate ȳ b1

hypothesized value µy,0 β1,0

standard error s.e.(ȳ) =

√
s2y
n s.e.(b1)

2The formula for the standard error of ȳ is

√
s2y
n
, but the formula for the standard error of b1 is more

complicated and not covered in this book.
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Applying the generic formula (Equation 13.2) to the least-squares situation gives
us t-test statistic for testing hypotheses about β1:

t =
b1 − β1,0
s.e.(b1)

This t-statistic follows the same t-distribution (see Section 11.2) whether it is used
to test a population mean µ or a population slope β1. We can obtain p-values from
the t-distribution the same way in which we did in Chapter 11. If the sample size n is
large, then this t-statistic is approximately Standard Normal N(0, 1), and we can use
Table 10.1 to obtain p-values.

The p-value is compared to a significance level (see Section 10.4). As before, if
the p-value exceeds the significance level (if p-value > α), we fail to reject the null
hypothesis.

Suppose that we want to test:

H0 : β1 = 2

HA : β1 ̸= 2

To calculate the t-test statistic using R, we need the least-squares estimate b1, and the
s.e.(b1). Load data, estimate the model, and use the summary() function:

mydata <- read.csv("http://rtgodwin.com/data/ls1.csv")

ls.model <- lm(y ~ x, data = mydata)

summary(ls.model)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.2636 15.6668 1.166 0.249

data$x 2.0712 0.1515 13.669 <2e-16 ***

From the output, we see that b1 = 2.07, and s.e.(b1) = 0.15. The t-statistic for testing
H0 : β1 = 2 is:

t =
2.07− 2

0.15
= 0.47

This t-statistic follows the t-distribution, whose shape is determined by the degrees of
freedom, n− k (see Section 11.2). In the present context, n− k = 50− 2 = 48 (because
the sample size is 50 and two least-squares estimates have been calculated, b0 and b1).
The p-value is:

pt(0.47, 48, lower.tail = FALSE)

[1] 0.3202417

If the null is correct, then the expected value of the t-statistic is 0. That is, the dif-
ference between what we estimate and hypothesize (b1−β1,0) should be zero on average.
The p-value for this hypothesis test comes from the area in the t-distribution, to the
right of 0.47. This gives us the probability of calculating a b1 that is more “extreme”
than the value of 2.07 that we just calculated. Thus, we need to set lower.tail =

FALSE in the above R code. If the sample size n is large enough, then the t-distribution
is well approximated by the N(0, 1) distribution. Using Table 10.1, we obtain the same
value of 0.32.
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Finally, the alternative hypothesis is two-sided, so we need to multiply the area
under the curve by 2: p-value = 0.32 × 2 = 0.64. Since the p-value > 0.1, we fail
to reject the nullhypothesis that the true β1 = 2. There is a 64% chance that, if we
had drawn a different sample from the same population generating y and x, that it
would produce a b1 further away from the null hypothesis, compared to what we just
witnessed (a distance of 2.07 - 2 = 0.07 away from H0).

13.5 Tests of “significance”

For the linear population model:

y = β0 + β1x+ ϵ

A special, and common hypothesis test is:

H0 : β1 = 0

HA : β1 ̸= 0

If β1 = 0 then x does not have a linear effect on y. That is, a change in x does not
lead to a change in y. The marginal effect of x on y is zero. If H0 : β1 = 0 is rejected,
then x is said to be “significant”. If we fail to reject H0 : β1 = 0, then x is said to be
“insignificant”.

13.6 Confidence intervals

Confidence intervals around b1 (or b0) are calculated and interpreted in the same way
that they were in Section 9.5. The formula for a confidence interval around b1 (for
example) is:

95% confidence interval around b1.

[b1 − 1.96× s. e.(b1) , b1 + 1.96× s. e.(b1)] (13.3)

In equation 13.3, the value of 1.96 comes from the 95% confidence level (-1.96 and
1.96 put 2.5% area in each tail of the Standard Normal distribution). A 90% or 99%
confidence interval would use 1.65 or 2.58 respectively, instead of 1.96. We can obtain
these critical values in R using:

qnorm(.05)

qnorm(.025)

qnorm(.005)

[1] -1.644854

[1] -1.959964

[1] -2.575829

For small samples, we could instead use the critical values from the t-distribution,
to get more accurate confidence intervals (the critical values of 1.65, 1.96, and 2.58
are approximate values for when the sample is large). Using a degrees of freedom of
n−k = 48 (for example), we get critical values of 1.68, 2.01, and 2.68 for the 90%, 95%
and 99% confidence levels:
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qt(.05, 48)

qt(.025, 48)

qt(.005, 48)

[1] -1.677224

[1] -2.010635

[1] -2.682204

The standard error of 0.15 is displayed in the summary() command:

data <- read.csv("http://rtgodwin.com/data/ls1.csv")

ls.model <- lm(data$y ~ data$x)

summary(ls.model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.2636 15.6668 1.166 0.249

data$x 2.0712 0.1515 13.669 <2e-16 ***

With b1 = 2.07, a critical value of 2.01 (from the t-distribution), and s.e.(b1) = 0.15,
the 95% confidence interval for the above example is:

95% CI = 2.07± 2.01× 0.15 = [1.77 , 2.37]

Notice that this confidence interval contains the value β1 = 2 from the null hypothesis in
the previous section. The 95% confidence interval around b1 contains all null hypotheses
for β1 that will be rejected at the 5% significance level.

13.7 Least-squares regression analysis

This section goes through some typical aspects of a least-squares regression analysis. It
does not include other aspects that should accompany a proper analysis, such as clean-
ing the data, checking for outliers, calculating summary statistics (minimum, sample
mean, sample variance, etc.), or plotting the data (in histograms, scatterplots, etc.).

� State the population model.
� Estimate the model using least-squares.
� Interpret the estimates.
� Comment on R2.
� Report a confidence interval.
� Conduct any hypothesis tests of interest.

The following examples go through these steps using the Mars data.

Example 13.1 — Mars income and number of years on Earth.

State the population model

A population model to investigate the relationship between the number of years
spent on Earth, and income earned on Mars, is:

income = β0 + β1years.on.earth+ ϵ (13.4)

β1 is the true effect on income of an additional year spent living on Earth. ϵ contains
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all the factors that affect income, besides years on Earth.

Estimate the model using least-squares

Load the sample of 1000 employed Mars colonists:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

To estimate β0 and β1 in this model, use the lm() command in R, and the summary()
command to see the results:

model1 <- lm(income ~ years.on.earth, data = mars)

summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 78287.77 2338.59 33.476 <2e-16 ***

years.on.earth 123.45 91.91 1.343 0.18

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 41680 on 998 degrees of freedom

Multiple R-squared: 0.001805, Adjusted R-squared: 0.0008044

F-statistic: 1.804 on 1 and 998 DF, p-value: 0.1795

Interpret the estimates

The estimated intercept is b0 = 78287.77. For a Mars colonist who has lived 0 years
on Earth, their expected income is 78287.77. The estimated slope is b1 = 123.45.
On average, for each additional year having been spent on Earth, income is expected
to increase by 123.45.

Comment on R2

The R-square from this regression is R2 = 0.0018. This is quite low, meaning
that variation in the number of years spent on Earth explains less than 1% of the
variation in income.

Report a confidence interval

The 95% confidence interval around b1 is:

95% CI = 123.45± 1.96× 91.91 = [−56.69 , 303.59]

Because the sample size is large (n = 1000), it makes little difference whether we
get the critical value (1.96) from the Standard Normal distribution, or from the
t-distribution.

Conduct a hypothesis test

Test the hypothesis that years spent on Earth has no effect on income:

H0 : β1 = 0

HA : β1 ̸= 0
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The t-statistic for this hypothesis is:

t =
123.45− 0

91.91
= 1.34

The p-value, either from Table 10.1 or from R is:

2 * pnorm(1.34, lower.tail = FALSE)

[1] 0.1802453

With a p-value of 18%, we fail to reject the null hypothesis. It appears that years
on Earth has no effect on income. Note that:

(i) This is a test of signficance (see Section 13.5).
(ii) The summary() command has already calculated the t-statistic and p-value

for H0 : β1 = 0.
(iii) The variable years.on.earth is said to be “insignificant”.

Concerning item ((ii)): in the output from summary(model1 above, make sure that
you can find the values for the t-statistic of 1.343 and p-value of 0.18.



14. Multiple regression

In this final chapter, we briefly introduce multiple regression (in contrast to single
variable regression in the previous two chapters). Multiple regression refers to least-
squares estimation of population models that include more than one “x” variable.
In practice, the vast majority of models estimated by researchers contain multiple
regressors (x variables), and in reality there are likely many factors that determine the
value for y. A linear population model with multiple x variables can be written:

y = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βkxk + ϵ (14.1)

k is the total number of x variables in the model, all of which may determine the value
for y. β1 is the effect of x1 on y, holding all other x variables constant. Similarly, β2 is
the effect of x2 on y, etc.

There are several reasons for including more than one x variable in the population
model, three of which are:

(i) We may be interested in the effect that several x variables have on y.
(ii) To improve our ability to predict a value for y.
(iii) There may be other variables that are correlated to both our main x variable of

interest, that y.

We will briefly investigate the importance of item (iii) as it relates to causal inference.
Estimation, interpretation of the estimates, and hypothesis testing and confidence

intervals, all remain largely unchanged in the multiple regression model compared to
the single variable regression model.

14.1 Lurking or confounding variables

A lurking, or confounding variable is one that threatens our ability to correctly estimate
the effect that an x variable has on a y variable. Lurking variables are a major issue
in analyses of causal inference, and are of tremendous import in many areas, not just
economics.
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Figure 14.1: A hidden x2 variable that determines both y and x1 will make estimation
of the effect of x1 on y difficult (or impossible).

The situation depicted in Figure 14.1, where x2 is a determinant of both x1 and
y, implies that the effect of x1 on y cannot be measured in the single variable linear
population model. That is, the estimated β1 (b1) is wrong in the population model:

y = β0 + β1x1 + ϵ

The reason that b1 gives the wrong answer for the true effect of x1 on y is that:

� A change in x2 is associated with a change in both x1 and y.
� When we “see” x1 changing, we know x2 is also changing.
� Attributing changes in y due to changes in x1 alone becomes impossible, since we
don’t know how much of the change in y came from x2.

The solution to the problem is to include the x2 variable in the model! If we can’t
actually observe x2 then we must use clever strategies and more advanced methods to
attempt to estimate the effect of x1 on y.

14.2 Estimating the multiple regression model

A multiple regression model is estimated in R by including all of the desired x variables
on the right-hand-side of the lm() command, each separated by a +. For example,
suppose we wish to use the Mars data to estimate the population model:

income = β0 + β1years.education + β2years.on.earth + ϵ

In R:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

model <- lm(income ~ years.education + years.on.earth, data = mars)

summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6746.60 5313.59 1.270 0.2045

years.education 4740.39 315.68 15.016 <2e-16 ***

years.on.earth -141.89 74.33 -1.909 0.0566 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 35150 on 997 degrees of freedom

Multiple R-squared: 0.1851, Adjusted R-squared: 0.1835

F-statistic: 113.3 on 2 and 997 DF, p-value: < 2.2e-16

Note that the R output <2e-16 is using scientific notation for the p-value, and means
that the p-value is less than 2×10−16, and is the smallest decimal that R can represent
(the p-value is essentially zero).
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14.2.1 Interpreting the estimation results

The estimated β values (b0, b1, b2)

The estimated β values have a similar interpretation as before, but with one very im-
portant addition. For example, the estimated value of 4740.39 means that an additional
year of education is associated with an increase in income of 4740.39, on average. The
important addition to the interpretation of this b1 value is that this estimated effect is
ceteris paribus. That is, holding all else equal. The estimated increase in income due
to education is while holding years on Earth constant. The value of -141.89 means that
each additional year lived on Earth is associated with a decrease in income of 141.89,
holding years of education constant.

In the multiple regression model, the effect of each x variable on y is while controlling
for all the other variables. This is a major advantage of the multiple regression model.
Lurking or confounding variables, when included in the model, are controlled for. The
relationships between multiple x variables can be accounted for as long as they are
included in the model.

Adjusted R2

In the multiple regression model, we look at adjusted R-squared (not the multiple R-
squared as in previous chapters). Adjusted R2 has a similar interpretation as before: it
is the ratio of the sample variance in y that can be explained using all of the x variables
in the model. For example, the value of 0.1835 above means that years.education

and years.on.earth can together explain 18.35% of the changes in income.

Hypothesis testing

The types of hypothesis tests that we have already discussed are conducted identically
in the multiple regression model as they were in the single variable model. Confidence
intervals, t-tests and p-values, are all calculated and interpreted the same as before.
In the multiple regression model, however, there is the opportunity to formulate hy-
pothesis that involve more than just one of the βs. Multiple hypothesis testing is more
complicated and not covered in this book.

14.3 Lurking or confounding variables

A lurking, or confounding variable is one that threatens our ability to correctly estimate
the effect that an x variable has on a y variable. These variables are a major issue in
analyses of causal inference, and are of tremendous import in many areas, not just
economics.

Figure 14.2: A hidden x2 variable that determines both y and x1 will make estimation
of the effect of x1 on y difficult (or impossible).

The situation depicted in Figure 14.2, where x2 is a determinant of both x1 and
y, implies that the effect of x1 on y cannot be measured in the single variable linear
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population model. That is, the estimated β1 (b1) is wrong in the population model:

y = β0 + β1x1 + ϵ

The reason that b1 gives the wrong answer for the true effect of x1 on y is that:

� A change in x2 is associated with a change in both x1 and y.
� When we “see” x1 changing, we know x2 is also changing.
� Attributing changes in y due to changes in x1 alone becomes impossible, since we
don’t know how much of the change in y came from x2.

The solution to the problem is to include the x2 variable in the model! If we can’t
actually observe x2 then we must use clever strategies and more advanced methods to
attempt to estimate the effect of x1 on y.

To illustrate the issue, consider the population model:

income = β0 + β1age + ϵ

We might guess that age has a positive effect on income, as we tend to see people
making more money the older they are. Let’s try estimating this model in R using the
Mars data:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

model1 <- lm(income ~ age, data = mars)

summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71634.84 4161.95 17.212 <2e-16 ***

age 223.49 95.26 2.346 0.0192 *

The estimation results suggest that each additional year of age is associated with an
increase in income of 223.49, on average. Now, test the hypothesis that age has zero
effect on income (that age does not determine or is not associated with income). This
is a test of the “significance” of the variable age:

H0 : β1 = 0

HA : β1 ̸= 0

R has already calculated the t-statistic (2.346) and p-value (0.0192) for this hypothesis
test. Since the p-value is less than 0.05, we reject the null hypothesis at the 5%
significance level, and conclude that age is a “significant” determinant of income.

Given our recent discussion for the need for the multiple regression model, can you
think of any lurking variables? We should be thinking about other variables that are
correlated or related with age, and also determine income. What about education?
The older a person is, the more likely they have more education. A worker who is 18
cannot have more than 12 years of education. The idea here is that age might just be
indicating (acting as a proxy for) years of education. Consider the following population
model instead:

income = β0 + β1age + β2years.educationϵ

In this model, we can examine the effect of age on income while controlling for edu-
cation. It is as if we can compare workers who all have the same education, but differ
only in their age. Estimate this model in R:
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model2 <- lm(income ~ age + years.education, data = mars)

summary(model2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -607.56 5861.52 -0.104 0.917

age 42.88 85.83 0.500 0.617

years.education 5010.40 314.32 15.940 <2e-16 ***

Notice that the effect of age on income has reduced, and is no longer significant!
After controlling for education, we now conclude that age is not a determining factor
of income. The positive relationship between age and education (older people tend to
have more education) resulted in the overestimation of the effect of age, when education
was omitted from the model.

14.4 Multiple regression model for Mars incomes

We conclude this text by estimating a multiple regression model using the Mars data.
We’ll try to determine the effect that education has on income. Note that economics
studies that involve income typically use the logarithm of income, an aspect that we
ignore for simplicity. Start with a single variable population model:

income = β0 + β1years.education + ϵ

Estimate this model in R:

mars <- read.csv("http://rtgodwin.com/data/mars.csv")

ls1 <- lm(income ~ years.education, data = mars)

summary(ls1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 847.5 5084.9 0.167 0.868

years.education 5031.1 311.5 16.154 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 35690 on 998 degrees of freedom

Multiple R-squared: 0.2073, Adjusted R-squared: 0.2065

F-statistic: 260.9 on 1 and 998 DF, p-value: < 2.2e-16

The interpretation of b1 is that each additional year of education leads to an average
increase in income of 5031.1. Education is statistically significant, with a p-value of
essentially zero (<2e-16) for H0 : β1 = 0. The 95% confidence interval is b1 ± 1.96 ×
311.5 = [4421, 5642]. Years of education explains 21% of the variation in incomes.

Take a look at the variables in the mars dataset. Which other variables might be
important to include in a multiple regression model. In fact, there is very little to
lose by including all of the variables in the data as a general practice, but many are
dummy variables which we won’t address in this book. In particular, we are looking for
variables that might be correlated with education, and also determine income. Some
possibilities might be age, or years on Earth. In particular, we should be looking at
the individual’s IQ score. It is very likely that IQ causes both years of education and
income. Education might be higher in individuals who score well in IQ tests because
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they have an easier time obtaining an education (it is less costly). A higher IQ may
also lead to higher incomes.

Let’s include these variables in a population model:

income = β0 + β1years.education + β2IQ + β3age + β4years.on.earth + ϵ

and estimate the model in R:

ls2 <- lm(income ~ years.education + IQ + age + years.on.earth, data = mars)

summary(ls2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -38238.81 8804.80 -4.343 1.55e-05 ***

years.education 2447.18 508.11 4.816 1.69e-06 ***

IQ 788.99 124.13 6.356 3.14e-10 ***

age 31.55 91.04 0.347 0.729

years.on.earth 35.19 120.39 0.292 0.770

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 35040 on 995 degrees of freedom

Multiple R-squared: 0.2384, Adjusted R-squared: 0.2353

F-statistic: 77.87 on 4 and 995 DF, p-value: < 2.2e-16

Notice that:

� The model explains 24% of the variation in income.
� After including IQ in the model, the estimated effect of an additional year of
education is to increase income by 2447.18 on average (compared to 5031.1 from
the single variable model).

� In the single variable model, IQ was a lurking variable that was causing both
income and education. Without including IQ in the model, it is difficult to get
the correct estimate for the effect of education on income.

� Both education and IQ are “significant”, age and years on Earth are not signifi-
cant.

14.4.1 The future

The multiple regression model is a widely used tool, and if the various assumptions
and requirements of the data are satisfied, can be extremely useful. However, the real
world is rarely simple enough that this basice multiple regression model is appropriate!
In your future econometrics studies you will use the multiple regression model with
variables that are non-continuous (dummy variables), approximate non-linear relation-
ships between variables using logarithms and polynomials, test hypotheses that involve
multiple variables, examine the properties of the least-squares estimators and the as-
sumptions that back them, deal with things like heteroskedasticity and instrumental
variables, and so much more!
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