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Chapter 1

Introduction

1.1 This book
This book serves as the course notes for the introductory econometrics course Econ 3040, at the Uni-
versity of Manitoba. This book covers the standard topics in an introductory econometrics course, and
tries to balance theory and application.

1.2 What is Econometrics?
Econometrics is the study of statistical methods applied to economics data. It is a subset of statistics.
Similarly, biology has “biometrics”, psychology has “psychometrics”, etc. Econometrics uses those
methods most suited to economics data.

Econometrics can be used to test economics theories. Economics is a social science, and economics
benefits from the scientific method. Theories are formed and tested using observations from the real
world. The testing part mostly relies on econometrics.

Econometrics can be used to estimate causal effects, though it should not be used to find them.
That is, the theoretical model (e.g. from Micro or Macro) should specify which variable causes which.
It is then up to the econometrician to estimate how much of an effect one variable has on another.
Econometrics may also be used to forecast or predict economic variables, although forecasting is not
covered in this course.

Econometrics specializes in dealing with observational data. Observational data is in contrast to
experimental data. In an experiment, there is some element of control - a variable can be changed
by the researcher, and the effect of the change on another variable can be more easily measured. In
observational data the causal variable is changing on its own, and this can be very problematic. Typically
there are important omitted variables in observational data. An experiment provides a better way to
estimate a causal effect, since the missing variables are not a problem in a well constructed experiment.

Economic models often suggest that one variable causes another. This often has policy implications.
The economic models, however, do not provide quantitative magnitudes of the causal effects. For
example:

• How would a change in the price of alcohol or cigarettes effect the quantity consumed?
• If income increases, how much of the increase will be consumed?
• If an additional fireplace is added to a house, how much will the price of the house increase?
• How does another year of education change earnings?

How would you use an experiment to determine the above four causal effects? You will likely conclude
that using an experiment would be too costly and/or unethical. Hence, we must rely on observational
data, and try to sort out the associated problems.

It is important to be aware of the limitations of statistics. It can never be used to determine
causation. Causation must be theorized. If two variables are correlated, statistics alone cannot tell
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which variable causes which, or if there is any causation at all. That is, correlation does not imply
causation. If, however, we find that two variables are statistically independent from each other, one
variable can not cause the other.

Objectives
Some objectives of this text are the following:

• Learn a method for estimating causal effects (LS)
• Understand some theoretical properties of LS
• Learn about hypothesis testing
• Learn to read regression analyses, so as to understand empirical economics papers in other courses
• Practice OLS using data sets

1.3 R Statistical Environment and RStudio
1.3.1 What is R?

R is a programming language designed to analyse data. R is free and open-source, with many user
contributed “add-on” packages that are readily downloadable by anyone. R is found in all areas of
academia that encounter data, and in many private and public organizations.

1.3.2 Where to get R
In this course we will use R and RStudio. Download and install R first: https://cran.r-project.org/
bin/windows/base/ (for Windows) or https://cran.r-project.org/bin/macosx/ (for Mac). Then,
download and install RStudio from https://www.rstudio.com/products/rstudio/download/.

1.4 Getting started with RStudio
1.4.1 Open RStudio

After you open RStudio it should look something like this:

1.4.2 Create a “script” file
A script file is a file where you can type and save your R computer code. To open a script file, click on
“File”, “New File”, “R Script”.

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/
https://www.rstudio.com/products/rstudio/download/
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• In the top left is your Script file. R commands can be run from the R Script file, and saved at
any time.

• In the bottom left is the Console window. Output is displayed here. R commands can be run
from the Console, but not saved.

• In the top right is the Environment. Data and variables will be visible here.
• The bottom right will display graphics (e.g. histograms and scatterplots).

1.4.3 Running R code
Copy and paste the following R code into the script window:
[]
print("Hello, World!")

Run the code by highlighting it, or making sure the cursor is active at the end of the line, and clicking
“Run” (you can also press Ctrl + Enter on PC or Cmd + Return on Mac).

The output from the program is reproduced in the box below:
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[1] "Hello , World!"

1.5 Arithmetic in R
R’s arithmetic operators include:

Operator Function
+ addition
- subtraction
* multiplication
/ division
^ exponentiation

Example 1.1 — Arithmetic in R. Use R to perform the following arithmetic operations:

1. 2 × 13
[]
2 * 13

[1] 26

2. 16/4

[]
16 / 4

[1] 4

3. 28

[]
2 ^ 8

[1] 256

4. 10+6
2

[]
(10 + 6) / 2

[1] 8

1.6 Create an object
You can create objects in R. Objects can be vectors, matrices, character strings, data frames, scalars
etc. Create two different scalars. Give them any name you like, but object names cannot start with a
number and cannot include certain characters like “!”:

a <- 3
b <- 5
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We have created two new objects called a and b, and have assigned them values using the assignment
operator <- (the “less than” symbol followed by the “minus” symbol). Notice that a and b pop up in
the top-right of your screen (the Environment window). We can now refer to these objects by name:

a * b

[1] 15

produces the output 15. To create a vector in R we use the “combine” function, c():

myvector <- c(1, 2, 4, 6, 7)

Notice that after creating it, the myvector object appears in the top-right Environment window.
myvector is just a list of numbers:

myvector =


1
2
4
6
7



1.7 Simple functions in R

Table 1.1: Simple R functions.
Function

sum()
mean()
var()
lm()

summary()

An R function takes an input, performs an operation, and then provides an output. Type the name
of the function and then type the input inside of parentheses: function.name(input). After we click
the “Run” button, we get the output. There are thousands of functions in R, a few simple ones are in
Table 1.1. For example, to add up all of the numbers in myvector we would run:

sum(myvector)

[1] 20

which provides the output 20. We have asked the computer to add up an object by calling the function
sum(), and putting the name of the object myvector inside of the parentheses.

1.8 Logical operators
Logical operators are used to determine whether something is TRUE or FALSE. Some logical operators
are:
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Operator Function
> greater than
== equal to
< less than
>= greater than or equal to
<= less than or equal to
!= not equal to

Logical operators are useful for creating “subsamples” or “subsets” from our data. Using logical opera-
tors, we can calculate statistics separately for ethnicities, treatment group vs. control group, developed
vs. developing countries, etc. (we will see how to do this later). For now, let’s try some simple logical
operations. Try entering and running each of the following lines of code one by one:

8 > 4

[1] TRUE

b == 6

[1] FALSE

To check to see which elements in myvector are greater than 3 we use:

myvector > 3

[1] FALSE FALSE TRUE TRUE TRUE

1.8.1 Multiple logical operators
Sometimes we would like to create subsets in our data based on multiple conditions or characteristics.
For example, we might want to study a subset of our data consisting of only single or widowed women
with 1 child or more. The “and” / “or” operators are useful in these situations:

Operator Function
& “and”
| “or”

For example, the following line of code:

myvector > 3 & myvector < 7

[1] FALSE FALSE TRUE TRUE FALSE

checks to see whether each element in myvector is greater than 3 and less than 7.

1.9 Loading data into R
There are several ways to load data into R. In this course we work with comma-separated values file
format (CSV format).

1.9.1 Directly from the internet
We can use the R code:
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mydata <- read.csv("file location.csv")

We need to replace file location with the actual location of the file, either on the internet or on your
computer. We can also replace the name of the data set mydata with any name we like. For example,
to load data directly from the internet into R, try the following:

mars <- read.csv("http://ryantgodwin.com/data/mars.csv")

After running the above line of code, you should see the data set appear in the top-right of RStudio
(the environment pane).

1.9.2 From a location on your computer
After saving a .csv file to your computer, you can use the read.csv() command to load the file from
its location on your computer. For example:

mars <- read.csv("c:/data/mars.csv")

loads a file from the location c:/data/.

1.9.3 file.choose()
Using the file.choose() command will prompt you to select the file using file explorer:

mars <- read.csv(file.choose())

1.10 View your data in spreadsheet form
Click on the spreadsheet icon next to your mars data set, or run the following command:

View(mars)
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Note the uppercase V (R is case sensitive). This command allows you to view your data in spreadsheet
form. See Figure 1.1.

Figure 1.1: View your data in spreadsheet form.

1.11 Scientific notation in R output
R’s default is to report numbers with many digits in scientific notation. For example, the number 1
million (1000000) is written in scientific notation as 1 × 106. We can see this notation in R using:

my.number <- 1000000
my.number

[1] 1e+06

The e in the output signifies an exponent to base 10. Similarly, the number 0.0000001 would be output
as 1e-06 (note the negative sign on the exponent).

The scientific notation can be difficult to read at times, and you can suppress this notation using
options(scipen=999). Try this option, and print out my.number again:

options(scipen=999)
my.number

[1] 1000000



Chapter 2

Probability Review

It is important for us review some basic concepts in probability. Ultimately, we will be calculating
“statistics” using datasets: averages, correlations, t-statistics, slope estimators, for example. All of
these “statistics” are random variables! Understanding some concepts in probability can help guide us
as we choose what to do with a dataset.

These are concepts that you should know from your previous statistics courses, and this chapter is
meant as only a review of some important concepts.

2.1 Fundamental Concepts
2.1.1 Randomness

Randomness is unpredictability. Outcomes that we cannot predict are random. Randomness represents
our inability as humans to accurately predict things. For example, if I roll two dice, the outcome is
random because I am not smart enough or skilled enough to predict what the roll will be. Things that
I cannot predict, or are to difficult to predict, are random. We cannot know everything. However, we
can attempt to model the randomness mathematically.

Randomness: the inability to predict an outcome.

This definition of randomness does not oppose a deterministic world view (fate). While many things
in our lives appear to be random, I still think that at some fundamental level the world is deterministic,
and that all events are potentially predictable. In the dice example, it is not far-fetched to believe that
a computer could analyze my hand movements and perfectly predict the outcome of the roll.

The sample space is the set of all possibilities (all outcomes) that can occur as a result of the random
process.

It is sometimes useful to construct a set, or sample space of the possible outcomes of interest. In
the dice example, the sample space is { , , , . . . , }. An event is a subset of the sample
space, and consists of one or more of the possible outcomes. For example, rolling higher than ten is an
event consisting of three outcomes { , , }.

An outcome is a single point, or possibility, in the sample space.

An event is a collection of outcomes. An event is a subset of the sample space.

2.1.2 Probability
A probability is a number between 0 and 1 that is assigned to an event (sometimes expressed as a
percentage). A standard definition is: the probability of an event is the proportion of times it occurs in
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the long run. This is fine for the dice example, and you may be aware that the probability of rolling a
seven is 1/6 or of rolling higher than ten is 1/12. This definition works for this example because we can
imagine rolling the dice repeatedly under similar conditions and observing that a seven occurs one-sixth
of the time.

What about events that occur seldomly or only once? What is the probability that you will obtain
an A+ in this course? What is the probability that Donald Trump will be imprisoned? For these events,
the former definition of probability is less satisfactory. A more general definition is: probability is a
mathematical way of quantifying uncertainty. For the Trump example, the probability of imprisonment
is subjective. I may think the probability is 0.1, but someone else may assign a probability of 0.9. Which
is right? These problems are better suited to a Bayesian framework, which is not discussed in this book.
The first definition of probability will suffice for the topics covered in this book.

Probability: a number between 0 and 1 representing the portion of times an event will occur, if the
event could occur repeatedly.

2.2 Random variables
A random variable translates outcomes into numerical values. For example, a die roll only has nu-
merical meaning because someone has etched numbers onto the sides of a cube. A random variable is
a human-made construct, and the choice of numerical values can be arbitrary. Different choices can
lead to different properties of the random variable. For example, I could measure temperature in Cel-
sius, Fahrenheit, Kelvin or something new (degrees Ryans). The probability that it will be above 20◦

tomorrow depends critically on how I have constructed the random variable.

2.2.1 Discrete and continuous random variables
Random variables can be separated into two categories, discrete and continuous. A discrete random
variable takes on a countable number of values, e.g. {0, 1, 2, ...}. The result of the dice roll is a discrete
random variable. A continuous random variable takes on a continuum of possible values (an infinite
number of possibilities).

Even when the random variable has lower and upper bounds, there are still infinite possibilities. The
temperature tomorrow is a continuous random variable. It may be bound between -50◦C and 50◦C,
but there are still infinite possibilities. What is the probability that it is 20◦C? What about 20.1◦C?
What about 20.0001◦C? We could keep adding 0s after the decimal. In fact, the probability of the
temperature taking on any one value approaches 0. Instead, we must talk about the probability of a
range of numbers. For example, the probability that the temperature is between 19◦C and 21◦C.

The continuum of possibilities makes it more difficult to discuss continuous random variables than
it does discrete random variables. We will use discrete random variables for examples and try to extend
the logic to continuous random variables.

2.2.2 Realization of a random variable
Finally, note the difference between a random variable and the realization of a random variable. Before
I roll the die, the outcome is random. After I roll the die and get a (for example), the 4 is just a
number - a realization of a random variable.

2.2.3 Key points
• A random variable can take on different values (or ranges of values), with different probabilities
• There are discrete and continuous random variables
• Continuous random variables can take on an infinite number of possible values, so we can only

assign probabilities to ranges of values
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• We can assign probabilities to all possible values for a discrete random variable
• The realization of a random variable is just a number, it used to be random, but now we’ve seen

the outcome

2.3 Probability function
A probability function is also called a probability distribution, or a probability distribution function (PDF).
Sometimes a distinction is made: probability mass function (PMF) for discrete variables instead of PDF
for continuous variables. I will use probability function for both.

A probability function is an equation (it can also be a graph or table), which contains information
about a random variable. The nature and properties of the randomness determines what type of equation
is appropriate. A different equation would be used for a dice roll than would be used for the wage of a
worker. The probability function is very important. The probability function accomplishes two things:
(i) it lists all possible numerical values that the random variable can take, and (ii) assigns probability
to values. Note that the probabilities of all outcomes must sum to 1 (something must happen). The
probability function contains all possible knowledge that we can have about the random variable (before
we observe its realization).

Probability function. The probability function accomplishes two things: (i) it lists all possible
numerical values that the random variable can take, and (ii) assigns probabilities to ranges of values.

Example 2.1 — Probability function for a die roll. Let Y = the result of a die roll. The probability
function for Y is:

Pr(Y = 1) = 1
6 , P r(Y = 2) = 1

6 , . . . , P r(Y = 6) = 1
6 (2.1)

Note how the function lists all possible numerical outcomes and assigns a probability to each. A more
compact way of expressing (2.1) is:

Pr(Y = y) = 1
6 ; y = 1, . . . , 6 (2.2)

The probability function in (2.2) may also be expressed in a graph (see Figure 2.1).

Example 2.2 — Probability function for a normally distributed random variable. The normal
distribution is an important probability distribution. Later, we will discuss why it is so important and
prevalent. For now, I will present the probability function for a random variable (you do not need to
memorize this).

f(y|µ, σ2) = 1√
2πσ2

exp −(y − µ)2

2σ2 ; −∞ < y < ∞ (2.3)

y is the random variable, µ and σ2 are the parameters that govern the probability of y. µ turns out to
be the mean or expected value of y, and σ2 turns out to be the variance of y. If µ and σ2 are known
(usually they aren’t), then you can determine the probability that y takes on any range of values.
However, this requires integration (you won’t have to integrate in this course).

2.3.1 Probabilities of events
Recall that the probability function contains all possible information about the random variable (all the
outcomes, and a probability assigned to each outcome), and that an event is a collection of outcomes.
The probability function can be used to calculate the probability of different events occurring.
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Figure 2.1: Probability function for the result of a die roll.
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Example 2.3 — Probability of an event Let Y be the result of a die roll. What is the probability of
rolling higher than 3?

Pr(Y > 3) = Pr(Y = 4) + Pr(Y = 5) + Pr(Y = 6) = 1
6 + 1

6 + 1
6 = 1

2

2.3.2 Cumulative distribution function
The cumulative distribution function (CDF) is related to the probability function. It is the probability
that the random variable is less than or equal to a particular value. While every random variable has a
probability function, it does not always have a CDF (but usually does). Again, let Y be the result of a
die roll, then the CDF for Y is expressed as equation 2.4 or as figure 2.2.

Pr(Y ≤ 1) = 1/6
Pr(Y ≤ 2) = 2/6
Pr(Y ≤ 3) = 3/6
Pr(Y ≤ 4) = 4/6
Pr(Y ≤ 5) = 5/6
Pr(Y ≤ 6) = 1

(2.4)

2.4 Moments of a random variable
The term “moment” is related to a concept in physics. The first moment of a random variable is
the mean, the second (central) moment is the variance, the third the skewness, and the fourth the
kurtosis. In this book, we will make extensive use of mean and variance, as well as the “mixed”
moment: covariance (and it’s close friend, correlation).
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Figure 2.2: Cumulative density function for the result of a die roll
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2.4.1 Mean / expected value
The mean, also called the expected value, of a random variable is the value that is expected, or the value
that occurs on average through many realizations of the random variable. An equation for the mean
(of a discrete random variable Y ) is:

E[Y ] =
K∑

i=1
piYi (2.5)

There are K possible events that can occur. Each event is labelled by i, and i goes from 1 to K. The
probability of each event is pi. Yi is the numerical value of event i. For such discrete random variables
as Y, the mean is determined by taking a weighted average of all possible outcomes, where the weights
are the probabilities.

The mean of a random variable can be determined from its probability function. Recall that the
probability function contains all possible information we could hope to have about the random variable.
So, it should be no surprise that if we want to determine the mean we have to do some math using the
probability function. The mean (and variance, etc.) is just information contained in the probability
function.

Notation for the mean of Y or expected value of Y is µY and E[Y ].

Equation 2.5 is valid for any discrete random variable Y. For the die roll example, using the proba-
bility function, we have that K = 6 and each pi = 1/6, so the mean of Y is:

E(Y ) = 1
6 × (1) + 1

6 × (2) + ... + 1
6 × (6) = 3.5

The mean / expected value:

• Might not even be a possible value for Yi, as in the die roll example above. (3.5 can’t be rolled).
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• The mean is not necessarily the value that “usually” occurs (that’s called the mode).
• The mean is not necessarily the value that is “most likely” to occur (that’s called the median).
• The mean / expected value is not the same thing as the sample average!

Calculating the mean of a continuous random variable is analogous, but more difficult. Again, the
mean is determined from the probability function, but instead of summing across all possible outcomes
we have to integrate (since the random variable can take on a continuum of possibilities). Let y be a
continuous random variable. The mean of y is

E[y] =
∫

yf(y) dy

If y is normally distributed, then f(y) is equation (2.3), and the mean of y turns out to by µ. You do
not need to integrate for this course, but you should have some idea about how the mean of a continuous
random variable is determined from its probability function.

Some properties of the mean are:

• E[X + Y ] = E[X] + E[Y ]
• E[cY ] = cE[Y ], where c is a constant
• E[c + Y ] = c + E[Y ]
• E[c] = c

2.4.2 Median and Mode
The mean of a random variable is not to be confused with the median or mode of a random variable,
although all three are measures of “central tendency”. The median is the “middle” value, where 50% of
values will be above and below. The mode is the value which occurs the most.

For variables that are normally distributed, the mean, median and mode are all the same, but this
is not always true. For a die roll, the mean and median are 3.5, but there either is no mode or all of
the values are the mode (depending on the particular definition of mode).

2.4.3 Variance
The variance of a random variable is a measure of its spread or dispersion. Variance is often denoted
by σ2. In words, variance is the expected squared difference of the random variable from its mean.

An equation for the variance of a random variable Y is:

Var(Y ) = E[(Y − E[Y ])2] (2.6)

When Y is a discrete random variable, then equation (2.6) becomes:

Var(Y ) =
K∑

i=1
pi × (Yi − E[Yi])2 (2.7)

where pi, Yi, and K are defined as before. Note that equation 2.7 is a weighted averaged of squared
distances. The variance is measuring how far, on average, the variable is from its mean. The higher the
variance, the higher the probability that the random variable will be far away from its expected value.

When the random variable is continuous, equation (2.6) becomes:

Var(y) =
∫

(y − E[y])2f(y) dy

but you don’t need to know this for the course.
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Some properties of the variance are:

• Var[X + Y ] = Var[X] + Var[Y ] + 2 × Cov[X, Y ]
• Var[cY ] = c2Var[Y ], where c is a constant
• Var[c + Y ] = Var[Y ]
• Var[c] = 0

2.4.4 Skewness and Kutosis
Notice in the variance formula (2.6), that there is an expectation of a squared term (E[]̇2). This partly
explains why the variance is called the second (central) moment. Similarly, we could take the expectation
of the Y to the third power, or fourth power, etc. Doing so would (almost) give us the third and fourth
moments.

The third (central) moment is called skewness and the fourth is called kurtosis. Much less attention
is paid to these moments than is to the mean and the variance. However, it is worth noting that if a
random variable is normally distributed, it has a skewness of 0 and a kurtosis of 3.

2.4.5 Covariance
Covariance is a measure of the relationship between two random variables. Random variables Y and X
are said to have a joint probability distribution. The joint probability distribution is like the probability
functions we have seen before (equations 2.1 and 2.3), except that it involves two random variables.
The joint probability function for Y and X would (i) list all possible combinations that Y and X could
take, and (ii) assign a probability to each combination. A useful summary of the information contained
in the joint probability function, is the covariance.

The covariance between Y and X is the expected difference of Y from its mean, multiplied by
the expected value of X from its mean. Covariance tells us something about how two variables move
together. That is, if the covariance is positive, then when one variable is larger (or smaller) than its
mean, the other variable tends to be larger (or smaller) as well. The larger the magnitude of covariance,
the more often this statement tends to be true. Covariance tells us about the direction and strength of
the relationship between two variables.

The formula for the covariance between Y and X is

Cov(Y, X) = E[(Y − µY )(X − µX)] (2.8)

The covariance between Y and X is often denoted as σYX . Note the following properties of σYX :

• σYX is a measure of the linear relationship between Y and X. Non-linear relationships will be
discussed later.

• σYX = 0 means that Y and X are linearly independent.
• If Y and X are independent (neither variable causes the other), then σYX = 0. The converse is

not necessarily true (because of non-linear relationships).
• The Cov(Y, Y ) is the Var(Y ).
• A positive covariance means that the two variables tend to differ from their mean in the same

direction.
• A negative covariance means that the two variables tend to differ from their mean in the opposite

direction.

2.4.6 Correlation
Correlation is similar to covariance. It is usually denoted with the Greek letter ρ. Correlation conveys
all the same information that covariance does, but is easier to interpret, and is frequently used instead
of covariance when summarizing the linear relationship between two random variables. The formula for
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correlation is

ρYX = Cov(Y, X)√
Var(Y )Var(X)

= σYX

σY σX
(2.9)

The difficulty in interpreting the value of covariance is because −∞ < σYX < ∞. Correlation transforms
covariance so that it is bound between -1 and 1. That is, −1 ≤ ρYX ≤ 1.

• ρYX = 1 means perfect positive linear association between Y and X.
• ρYX = −1 means perfect negative linear association between Y and X.
• ρYX = 0 means no linear association between Y and X (linear independence).

2.4.7 Conditional distribution and conditional moments
When we introduced covariance, and began to talk about the relationship between two random variable,
we introduced the concept of the joint probability distribution function. Recall that the joint probability
function lists all combinations of the random variables, assigning a probability to each combination.

Sometimes, however, it is useful to obtain a conditional distribution from the joint distribution.
The conditional distribution just fixes the value of one of the variables, while providing a probability
function for the other. This probability function may change depending on the fixed value.

We need this concept for the conditional expectation, which will be important later when we discuss
dummy variables. The conditional expectation is just the expected or mean value of one variable,
conditional on some value for the other variable.

Let Y be a discrete random variable. Then, the conditional mean of Y given some value for X is

E(Y |X = x) =
K∑

i=1
(pi|X = x)Yi (2.10)

Example 2.4 — Joint distribution Suppose that you have a midterm tomorrow, but that there is a
possibility of a blizzard. You are wondering if the midterm might be cancelled. If there is a blizzard,
there is a strong chance of cancellation. If there is no blizzard, then you can only hope that the
professor gets severely ill, but that still only gives a small chance of cancellation. The joint probability
distribution for the two random events (occurrence of the blizzard, and occurrence of the midterm)
is given in table (2.1). Note how all combinations of events have been described, and a probability
assigned to each combination, and that all probabilities in the table sum to 1.

What is E[Y ]? It is 0.77. This means there is a 77% chance you will have a midterm. E[Y ] is
an unconditional expectation; it is the mean of Y before you look out the window in the morning
and see if there is a blizzard. The conditional expectations, however, are E[Y |X = 1] = 0.20 and
E[Y |X = 0] = 0.96. This means there is only a 20% chance of a midterm if you see a blizzard in the
morning, but a 96% chance with no blizzard. Some other review questions using table (2.1) are at the
end of this chapter.

Table 2.1: Joint distribution for snow and a canceled midterm
Midterm (Y = 1) No Midterm (Y = 0)

Blizzard (X = 1) 0.05 0.20
No Blizzard (X = 0) 0.72 0.03

2.5 Some Special Probability Functions
In this section, we present some common probability functions that we will reference in this course. We
start with the normal distribution, and a discussion of the central limit theorem.
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Figure 2.3: Probability function for a standard normal variable, py<−2 in gray
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2.5.1 The Normal distribution
The probability function for a normally distributed random variable, y, has already been given in
equation (2.3). What is the use of knowing this? If we know that y is normal, and if we knew the
parameters µ and σ2 (we will likely have to estimate them) then we know all we can possibly hope to
about y. That is, we can use equation (2.3) to determine the mean and variance of y. We can draw out
equation (2.3), and calculate areas under the curve. These areas would tell us about the probability of
events occurring.
Suppose that we knew y had mean 0 and variance 1. What is the probability that y < −2? Using
equation (2.3), we could draw out the probability function, and calculate the area under the curve, to
the left of -2. See figure (2.3). This area, and probability, is 0.023.

2.5.2 The standard Normal distribution
The probability function drawn out in figure (2.3) is actually the probability function for a standard
normal variable. A variable is standard normal when its mean is 0 and variance is 1. When µ = 0 and
σ2 = 1, the probability function for a normal variable (equation 2.3) becomes:

f(y) = 1√
2π

exp −y2

2 (2.11)

Note that any random normal variable can be “standardized”. That is, if we subtract the variable’s
mean, and divide by it’s standard deviation, then we change the mean to 0, and variance to 1. It
becomes “standard normal”. This practice is useful in hypothesis testing, as we shall see.

2.5.3 The central limit theorem
So why do we care so much about the normal distribution? There are hundreds of probability functions,
that are appropriate in various situations. The heights of waves might be described by the Nakagami
distribution. The probability of successfully drawing a certain number of red balls out of a hat of red
and blue balls is described by the binomial distribution. The number of customers that visit a store in
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Figure 2.4: Probability function for the sums of dice, with Normal density functions superimposed. As
the number of random variables that we sum increases, the distribution of the sum becomes Normal.
This is due to the central limit theorem (CLT).

an hour might be described by the Poisson distribution. The result of a die roll is uniformly distributed.
So why should we pay so much attention to the normal distribution?

The answer is the central limit theorem (CLT). Loosely speaking, the CLT says that if we add up
enough random variables, the resulting sum tends to be normal. It doesn’t matter if some are Poisson
and some are uniform. It only matters that we add up enough. If the random outcomes that we seek
to model using probability theory are the results of many random factors all added together, then the
central limit theorem applies. This turns out to be plausible for the types of economic models we are
going to consider. This has been a very casual explanation of the CLT; you should be aware that there
are several conditions required for it to hold, and several versions.

Example 2.5 — Sum of two uniforms. Let Y be the result of summing two die rolls. What is the



2.6 Review Questions 26

probability function for Y ?

Pr(Y = 2) = 1/36
Pr(Y = 3) = 2/36
Pr(Y = 4) = 3/36
Pr(Y = 5) = 4/36
Pr(Y = 6) = 5/36
Pr(Y = 7) = 6/36
Pr(Y = 8) = 5/36

...
Pr(Y = 12) = 1/36

The above equation lists all the possibilities, and assigns a probability to each. The probability
function is also represented in Figure (2.4). Notice that while each individual die has a uniform (flat)
distribution, summed together it begins to get a “curve”.

Now, let’s add a third die, and see if the probability function looks more normal. Let Y = the sum
of three dice. It turns out the mean of Y is 10.5 and the variance is 8.75. The probability function for
Y is shown in figure (2.4). Also in figure (2.4), the probability function for a normal distribution with
µ = 10.5 and σ2 = 8.75. Notice the similarity between the two probability functions.

The CLT says that if we add up the result of enough dice, the resulting probability function should
become normal. Finally, we add up eight dice, and show the probability function for both the dice and
the normal distribution in figure(2.4), where the mean and variance of the normal probability function
has been set equal to that of the sum of the dice.

2.5.4 The Chi-square (χ2) distribution
Suppose that y is normally distributed. If we add or subtract from y we change the mean of y, but it
still will follow a normal distribution. If we multiply or divide y by a number, we change its variance,
but y will still be normal. In fact, this is how we standardize a normal variable (we subtract its mean,
and divide by its standard deviation).

While a linear transformation (addition, multiplication, etc.) of a normal variable leaves the variable
normally distributed, normal variables are not invariant to non-linear transformations. If we square a
standard normal variable (e.g. y2), it becomes a χ2 distributed variable. We will use this distribution
for the F-test in a later chapter.

2.6 Review Questions
1. Define the following terms:

outcome event random variable
discrete variable continuous variable parameter
CLT mean variance
probability function covariance correlation

2. The joint probability function for X and Y is:

Y = −1 Y = 0 Y = 1
X = 1 0.25 0 0.25

X = −1 0 0.5 0

(a) What is the Cov(X, Y )?
(b) Are X and Y independent?
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3. Use table (2.1).
(a) What are the probability functions for Y and X (independent from each other)?
(b) What are the mean and variance of X?
(c) What is Cov(X, Y )?
(d) What is ρXY ?

4. Can the mean of a random variable be a value that is not in the sample space?
5. Let Y be the number of “heads” that occur from flipping two coins.

(a) What is the probability distribution for Y ?
(b) Derive the mean and variance of Y .

6. The random variable Y has a mean of 2 and a variance of 4. What is the mean and variance of
Z, where Z = 1

2(Y − 2)?
7. Let Y be the sum of 3 dice.

(a) What is the mean and variance of Y ?
(b) Suppose that on each of the 3 dice, the numbers on each side are tripled. What is the mean
and variance of the sum of these 3 dice (where all number have been tripled)?

8. Suppose that Z is a standard Normal random variable.
(a) What is the distribution for Y , where Z = 2 × Y + 1?
(b) What is the distribution for Z2?

2.7 Answers
2. a) The formula for the covariance of X and Y is:

Cov (X, Y ) = E [(X − µX) (Y − µY )]

The mean of X and Y are:

µX = 0.5(1) + 0.5(−1) = 0

µY = 0.25(−1) + 0.5(0) + 0.25(1) = 0

Finally, the covariance is:

Cov (X, Y ) = E [XY ] = 0.25(1)(−1) + 0.5(−1)(0) + 0.25(1)(1) = 0

b) Even though the covariance is 0, X and Y are not independent! We can see this by looking at
the joint probability function. If we observe the value of Y , then we know, with certainty, the value
of X. That is, if we observe Y = −1 or Y = 1, then we know that X = 1. If we observe Y = 0,
then we know that X = −1. Y can predict the value of X, so X and Y are not independent. The
point is that covariance measures linear association between two variables. In this example, the
relationship between X and Y is non-linear. If we were to graph the relationship between the two
variables, we would see a “U” shape.

3. a) To get the uncoditional probabilities for Y we can sum the columns, and for the probabilities
of X we can sum the rows, of table (2.1). The probability function for Y is:

Pr (Y = 1) = 0.77 ; Pr (Y = 0) = 0.23

and for X is:

Pr (X = 1) = 0.25 ; Pr (Y = 0) = 0.75

b)

E [X] = 0.25(1) + 0.75(0) = 0.25
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Var [X] = 0.25(1 − 0.25)2 + 0.75(0 − 0.25)2 = 0.1875

c) To get the covariance, we will need the mean of Y :

E [Y ] = 0.77(1) + 0.23(0) = 0.77

Now, the covariance is:

Cov (X, Y ) = 0.05(1 − 0.25)(1 − 0.77)
+ 0.20(1 − 0.25)(0 − 0.77)
+ 0.72(0 − 0.25)(1 − 0.77)
+ 0.03(0 − 0.25)(0 − 0.77)
= −0.1425

d) The formula for correlation is given in equation (2.9). We have already calculated Cov (X, Y )
and Var [X], but we need Var [Y ]:

Var [Y ] = 0.77(1 − 0.77)2 + 0.23(0 − 0.77)2 = 0.1771

Now, the correlation is:

ρYX = Cov(Y, X)√
Var(Y )Var(X)

= −0.1425√
0.1875 × 0.1771

= −0.7820



Chapter 3

Statistics Review

A statistic is any mathematical function using a sample of data. It is just an equation applied to the
data. When a statistic is used to estimate a population parameter, it is called an estimator. One of the
main goals of this course is to become familiar with a particular estimator - the ordinary least squares
estimator, but for this chapter we will review some simpler estimators.

We will discuss the population, and why the sample y should be considered random. Then, we will
discuss some estimators. A very important point is that, because y is random, functions of y are also
random. Since an estimator is just an equation applied to y, the estimator itself is also random. As we
know from the previous chapter, random variables have probability functions.

The probability function for an estimator is given a special name - the sampling distribution. Ob-
taining some properties of the estimator from its sampling distribution, such as mean and variance, will
tell us whether or not the estimator is “good”, and will guide our choice of which estimator to use.

3.1 Random Sampling from the Population
A sample of data is a collection of variables. In econometrics, most of these variables are realizations
of a random process. The numbers that make up (at least some of) the sample values came from a
random process. The sample typically appears to us on our computer screen as a “spreadsheet” where
each column is a different variable and each row is a different sample unit. The sampling “units” could
be people, countries, firms, etc.

There are at least two ways to think about where a random sample, y, comes from. Both ways make
use of the idea of a population. The population holds all of the information, the truth. If we knew the
entire population, our jobs as statisticians or econometricians would be much easier. Instead we will
obtain only a piece of the puzzle, a sample of data from the population.

The first way to think about the population, is that it is a data generating process (dgp). It is a
random process that generates the y variables that we observe. It is as if a die is being rolled, generating
the numbers in the sample, but we can’t quite see what the die looks like. Alternatively, if y is normally
distributed, then values in y are generated from equation (2.3), but where µ and σ2 are unknown. This
might be a difficult way to think about things.

A second, possibly easier way to think about the population, is to imagine it consisting of all of the
data possible. When we obtain economic data, we typically do not observe everyone or everything in
the population of interest. Instead we observe a sample of the population. Hopefully, members of the
population will be selected randomly into the sample (otherwise we will have problems).

Suppose we want to know the mean height of a male U of M student. We can not afford to measure
the height of every student, so we collect a sample, and hope that it represents the population. Suppose
we stand in the University Centre for an hour and measure heights of students. The sample that we
will collect is random - we don’t know what the heights will be yet. On a different day, at a different
time, or in a parallel universe, we will randomly select different students, get different heights, and a
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different sample.
We will want this sample to be independently and identically distributed (iid). Indpendent - none of

the random variables in the sample have any connection. Independence would be violated if a basketball
team walked through the University Centre and I sampled all of their heights. Identical - all of the
random variables in the sample come from the same population (or probability function). The identical
assumption would be violated if I accidentally sampled some Mini U students (grade school students
touring campus).

Table 3.1: Entire population of heights (in cm). The true (unobservable) population mean and variance
are µy = 176.8 and σ2

y = 39.7.
177.3 170.2 187.2 178.3 170.3 179.4 181.2 180.0 173.9
178.7 171.7 160.5 183.9 175.7 175.9 182.6 181.7 180.2
181.5 176.5 162.1 180.3 175.6 174.9 165.7 172.7 178.9
175.3 178.7 175.6 166.4 173.1 173.2 175.6 183.7 181.3
174.2 180.9 179.9 171.2 171.0 178.6 181.4 175.2 182.2
171.7 178.4 168.1 186.0 189.9 173.4 168.7 180.0 175.1
175.7 180.8 176.2 170.8 177.3 163.4 186.3 177.1 191.2
171.0 180.3 169.5 167.2 178.0 172.9 176.0 176.5 171.9
175.1 184.2 165.3 180.2 178.3 183.4 173.9 178.6 177.9
184.5 184.1 180.9 187.1 179.9 167.1 172.0 167.4 172.7
171.6 186.6 182.4 185.5 174.8 178.8 192.8 179.3 172.0

As an example, let’s pretend that the entire population of heights is in table (3.1). This is a simplified
example of a population - the table should be much larger - usually we assume the population is near-
infinite. Let’s collect a random sample from this population, say 20 observations (the bold numbers
in the table). Our sample is then denoted y = {173.9, 171.7, 182.6, 181.5, 162.1, 174.9, 165.7, 182.2,
171.7, 168.1, 189.9, 175.7, 163.4, 186.3, 169.5, 171.9, 173.9, 172.0, 172.7, 172.0}. y is random because
we could have selected different heights from the table.

3.2 Estimators and Sampling Distributions
An estimator is a way of using the sample data y in order to “guess” something about the population
that y comes from. In the example of the heights of male U of M students, we might be interested
in knowing the mean height. The mean height would provide the best prediction for the height of the
next random student that walks through the door. So, we collect our sample, y = {173.9, 171.7, 182.6,
181.5, 162.1, 174.9, 165.7, 182.2, 171.7, 168.1, 189.9, 175.7, 163.4, 186.3, 169.5, 171.9, 173.9, 172.0,
172.7, 172.0}. How should we use this sample to estimate the mean height?

The difference between a population value (such as the population mean or variance), and an estima-
tor (such as the sample mean or variance), is very important. The population mean is the unobservable
truth, and is a constant (non-random). The sample mean is an estimator for the population mean,
and as we shall see, is a random variable. In this section we want to build up the idea of the sampling
distribution of an estimator, in order to determine its properties. This will help us to determine if the
estimator is “good”.

3.2.1 Sample mean
A popular choice for estimating the population mean (E[y] or µy) is the sample mean (or sample average,
or just average). The sample mean of y is usually denoted by ȳ. You have seen the equation for the
sample mean before:

ȳ = 1
n

n∑
i=1

yi (3.1)
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where yi denotes the ith observation, and where n denotes the sample size. If we plug in our sample of
heights into equation (3.1) we get ȳ = 174.1.

An important question is: how good is the estimator? That is, how good of a job is the estimator
doing at “guessing” the true unobservable thing in the population? In our specific example: how good
is the sample mean at estimating the true population mean of heights? This is an importannt question,
because there are many ways that we could use the information in y to try to estimate the mean height.
Why is equation (3.1) so popular?

To answer these questions, we need to enter a hypothetical situation, which will likely not be the
case in the real world. Let’s pretend we can “see” the entire population of heights (all of Table 3.1). If
we can see all of Table (3.1), and not just the sample y, then we know the true mean height. We just
take the average of the entire population, and get 176.8. So, ȳ = 174.1 is wrong!

Recall that the sample, y, is random. Each element of y was selected randomly from the population.
We could have selected a different sample of size n = 20. For example, in a parallel universe, we could
have gotten y∗ = {175.9, 175.3, 182.2, 178.6, 175.2, 180.3, 178.3, 183.7, 176.0, 167.4, 178.7, 178.7, 186.0,
175.6, 180.0, 168.7, 178.6, 173.1, 173.2, 187.1}, where the * in y∗ denotes that we are in the parallel
universe. In this parallel universe, we got ȳ∗ = 177.6. But in every universe, the population (table 3.1),
is the same.

So, ȳ is a random variable. ȳ is random because y is random. We could have drawn a different
random sample, in which case we would have gotten a different ȳ. In our example, there are a near
infinite number (about 4 × 1020) of different samples of size n = 20, and ȳs, that we could get from the
same population. Some of the ȳs will be close to the true population mean height of 176.8, others far
away. Whether or not ȳ is a good idea for estimating the population mean E(y) can be determined by
analyzing all the possible values that ȳ can take.

3.2.2 Sampling distribution of the sample mean
Recall the discussion on probability functions in Chapter 2. A random variable (usually) has a probability
function. This probability function describes all the possible values that the random variable can take,
assigning a probability to each possibility. The form of the probability function depends on the nature
of the random variable.

When the random variable is an estimator, then the probability function gets a special name - the
sampling distribution. That is, a sampling distribution is just a fancy name for the probability function
of an estimator. The sampling distribution is a hypothetical construct. It describes the probability of
outcomes of ȳ, but in the real world we only get one sample y and one estimate ȳ.

An alternative way of defining the sampling distribution follows. Imagine that you could draw all
possible random samples of size n = 20 from the population, calculate ȳ each time, and construct a
relative frequency diagram (a histogram) for all of the ȳs. This relative frequency diagram would be
the sampling distribution of the estimator ȳ for n = 20.

This alternative definition of the sampling distribution can be approximated using a computer.
Using a computer, I have drawn 1 million different random samples of size n = 20 from table (3.1),
and have calculated ȳ each time. (This takes about 10 seconds on a fast computer). I have drawn a
histogram using all of the ȳs (figure 3.1). Figure (3.1) is a simulated sampling distribution.

Which probability function describes ȳ? Look again at equation (3.1). Notice the summation
operator. ȳ involves taking the sum of random variables (the yis). It turns out that if the sample size
is large enough (our n = 20 might be a bit too small) then the central limit theorem applies, and ȳ is
normally distributed (recall the summation of dice). Notice also that figure (3.1) resembles a normal
distribution.

We will derive some features of an estimator from its sampling distribution. These features will tell
us whether the estimator is “good” or “bad”. Some important properties of the estimator are its mean
(expected value) and its variance. This may be a strange idea at first. For example, we will take the
expected value of the sample mean (which is an estimator for an expected value). That is, we will take
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Figure 3.1: Histogram for 1 million ȳs
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the mean of the sample mean (meta!).
Three important properties of an estimator, that will largely guide whether the estimator is “good”

or not, are bias, efficiency, and consistency. These properties are partly determined from the sampling
distribution of the estimator, and we will now discuss each property in turn.

3.2.3 Bias
What happens if we consider the expected value, or the mean, of an estimator? An estimator is random,
so it should have a mean. What would we want the expected value of the estimator to be? The thing
we are trying to estimate, of course. So, if we are estimating the population mean using the sample
mean (equation 3.1), then we want to get the "right" answer on average. That is, we want E[ȳ] = E[y].
If this is true, then I can "expect" to get the right answer when using ȳ in many situations.

If E[ȳ] = E[y], then ȳ is said to be unbiased. If E[ȳ] ̸= E[y], then ȳ would be a biased estimator;
it would not give us the “right” answer on average. Given the popularity of ȳ as an estimator for the
population mean, you might anticipate that it is an unbiased estimator. The following is a short proof
of the unbiasedness of the sample average.

Assume that yi ∼ (µy, σ2
y), and that the yis are iid. This just says that each random variable, yi, in

the sample, has the same population mean (µy) and population variance (σ2
y). Now, take the expected
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value of the estimator:

E [ȳ] = E
[

1
n

n∑
i=1

yi

]

= 1
n

E
[

n∑
i=1

yi

]

= 1
n

E [y1 + y2 + · · · + yn]

= 1
n

(E [y1] + E [y2] + · · · + E [yn])

= 1
n

(µy + µy + · · · + µy)

= nµy

n
= µy

(3.2)

We find that the expected value of ȳ is equal to the true unobservable population mean, and so ȳ is an
unbiased estimator.

3.2.4 Efficiency
Suppose that the estimator is unbiased. What happens now if we consider the variance of an estimator?
What do want this variance to be? We would want it to be as small as possible. That is, we would
want the estimator to have a high probability of being close to the thing we are trying to estimate. In
the case of ȳ, we should hope that the Var[ȳ] is small so that on average, ȳ is close to µy.

Efficiency is when an estimator has the smallest variance, compared to all other potential estimators.
We will restrict our attention to other estimators that are also linear and unbiased. So, ȳ is efficient if
Var[ȳ] ≤ Var[µ̂y], where µ̂y is any other linear unbiased estimator for the population mean of y. It turns
out that there are many linear and unbiased estimators for the population mean, but that the sample
mean has the smallest variance. So, we say that ȳ is efficient.

The proof of the efficiency of ȳ is omitted, however, an important part of the proof is included. In
order to compare the variance of ȳ to other potential estimators, we first have to be able to derive it:

Var [ȳ] = Var
[

1
n

n∑
i=1

yi

]

= 1
n2 Var

[
n∑

i=1
yi

]

= 1
n2 Var [y1 + y2 + · · · + yn]

= 1
n2 (Var [y1] + Var [y2] + · · · + Var [yn])

= 1
n2

(
σ2

y + σ2
y + · · · + σ2

y

)

=
nσ2

y

n2 =
σ2

y

n

(3.3)
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Note that the n in the denominator means the variance gets smaller as the sample size grows. That is,
a larger sample provides an estimate that is on average closer to the true population mean. This is one
reason why larger samples are better than smaller ones.

Now that we have derived the mean and variance of ȳ, and have used the central limit theorem to
say that ȳ is normally distributed, we can write the full sampling distribution: ȳ ∼ N(µy, σ2

y/n). Recall
that this sampling distribution contains all the knowledge that we can have about the random variable
ȳ. This sampling distribution is not only useful to determine the properties of unbiasedness, efficiency,
and consistency, but will also be useful for hypothesis testing.

3.2.5 Consistency
Consistency is the last statistical property of an estimator that we will consider. An estimator is
consistent if, having all possible information in the population, it provides the “right answer” every time.
That is, as the sample size grows to infinity, the estimator provides the thing it’s trying to estimate
with probability 1. Two conditions are required for ȳ to be (strongly) consistent: limn→∞ E[ȳ] = µy

and limn→∞ Var[ȳ] = 0. The first condition says that the bias should disappear as the sample size
grows. Since ȳ is unbiased this condition is easily met. The second condition says that the variance
of the estimator should go to 0 as the sample size grows; this is easily verified by noting the n in the
denominator of Var[y].

Consistency is the most important property for an estimator to have. Without consistency, the
estimator is useless. In all, we have shown that ȳ is unbiased, efficient, and consistent. Sometimes the
acronym BLUE (best linear unbiased estimator) is used to describe such an estimator. That ȳ is BLUE
is a very good reason to use it as an estimator for µy, among the many possibilities.

3.3 Hypothesis Tests (known σ2
y)

The types of hypotheses we are talking about concern statements about the unobservable population.
For example, we might hypothesize that the true population mean height of U of M students is 173 cm.
A hypothesis test uses the information in the sample to assess the plausibility of the hypothesis. In
general, a hypothesis test begins with a null hypothesis, and an alternative hypothesis. For example:

H0 : µy = µy,0

HA : µy ̸= µy,0
(3.4)

H0 is the null hypothesis. The null hypothesis is “choosing” a value for the population mean, µy.
The hypothesized value of the population mean is denoted µy,0. The alternative hypothesis (HA) is
two-sided; the null hypothesis is wrong if the population mean (µy) is either “too small” or “too big”
relative to the hypothesized value. Since most tests in econometrics are two-sided, we will not consider
one-sided tests here, although they are very similar.

The hypothesis test concludes with either: (i) “reject” H0 in favour of HA, or (ii) “fail to reject” H0.
Which decision is reached ultimately depends on a probability (p-value), and on the researcher (you)
deciding subjectively whether this probability is small or large. The sample data, and our knowledge of
the sampling distribution of the estimator, will determine this probability.

Let’s go back to the heights example. From our sample of n = 20 we estimated the population mean
to be ȳ = 174.1. Suppose that the null and alternative hypotheses are:

H0 : µy = 173
HA : µy ̸= 173

(3.5)

Our estimate of 174.1 is clearly different from our hypothesis that the true population mean height
is 173. Notice that the difference between what we actually estimated from the sample, and our null
hypothesis, is 174.1 − 173 = 1.1. This difference of 1.1 does not necessarily imply we should reject the
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Figure 3.2: Normal distribution with µ = 173 and σ2 = 39.7/20. Shaded area is the probability that the
normal variable is greater than 174.1.
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null hypothesis. Rather, is this difference big enough to warrant rejection of H0? More accurately, we
should only reject H0 if the probability of getting a ȳ further away than 1.1 from H0, is small. This
probability is called a p-value.

Recall once again that ȳ is a random variable. Its value depends on the random sample that we
draw from the population. A different sample might give us ȳ = 190. This would be “worse” for the
null hypothesis of 173, than getting the value ȳ = 174.1. Out of all the samples that we could draw,
out of all the parallel universes, what proportion of them would provide a ȳ that is further than 1.1
from H0? Imagine that only 4.3% of possible samples from the population were further than 1.1 from
H0. We have to decide one of two things. Either we have witnessed a rare event (are living in a strange
universe) and the null is true, or the null is false. The actual p-value for this example is not 4.3%.
We will now discuss how to determine the actual p-value for this problem, and for other problems in
general.

As we have repeatedly stated, ȳ is a random variable. It has a probability function, which we
call a sampling distribution (because it’s an estimator). We have derived the sampling distribution:
ȳ ∼ N(µy, σ2

y/n). The sampling distribution can be used to calculate various events involving ȳ. For
example, if we want to know the probability that ȳ > 18, we can draw out the normal curve (provided
that we know µy and σ2

y/n) and calculate the area under the curve, to the right of 18.
Classical hypothesis testing proceeds by assuming that H0 is true. If H0 is true, then the sampling

distribution of ȳ is N(µy,0, σ2
y/n). That is, if the null hypothesis is correct, the true mean of ȳ is µy,0.

To calculate the p-value, we still need to know σ2
y . For now, we will assume that it is know, but this is

an unrealistic assumption. In the real world, we will have to estimate σ2
y .

Assuming that we know that σ2
y = 39.7 (again, this is very unrealistic) then we have the variance

of the sample average (σ2
y/n = 39.7/20 = 2.0), and so the full sampling distribution of the sample mean

under the null hypothesis is: ȳ ∼ N(173, 2). This probability function is drawn in figure (3.2). All that
remains is to calculate the probability of obtaining a ȳ that is more adverse to the null hypothesis than
the one we just calculated. Half of this probability is represented by the shaded region in figure (3.2).
This is a two sided test, so it doesn’t matter if ȳ is too large or too small: we need to multiply the
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one-sided p-value by 2. So, the p-value for our two-sided test is 0.22 × 2 = 0.44.
The interpretation of the p-value of 0.44 is as follows. If the null hypothesis of H0 = 173 is true,

then there is a 44% chance of observing a ȳ that is further away from 173 than the difference of
174.1 − 173 = 1.1 that we just observed. Would you “reject” or “fail to reject” based on this? Most
researchers would fail to reject. There is a high probability of getting a ȳ much more adverse to the
null, so the null seems plausible.

3.3.1 Significance of a test
At what point should we decide that the p-value is too small, and reject the null hypothesis? The choice
is somewhat arbitrary, and is up to the researcher (you). Standard choices have been 10%, 5%, and
1%. A pre-decided maximum p-value under which H0 will be rejected is called the significance level of
the test. It is sometimes denoted by α. In the previous example, we fail to reject the null at the 10%
significance level. Note that failing to reject at the 10% level implies that we also fail to reject H0 at
the 5% and 1% significance levels.

3.3.2 Type I error
Take another look at figure (3.2). Even when the null hypothesis is true and figure (3.2) is the correct
sampling distribution for ȳ, we will sometimes randomly draw a weird sample that makes H0 appear to
be “wrong”. That is, even when the null is true, in some of the parallel universes we will draw a sample
that gives a ȳ that is very far from the truth. In these cases, we will erroneously reject the null. If the
null hypothesis is falsely rejected, it is called a type I error. Type I error is the probability that H0 is
rejected when the null is true:

Pr(type I error) = Pr(reject H0 | H0 is true) (3.6)

How do we determine what this type I error will be? As soon as we pick the significance of the test,
it has been determined. That is, type I error = α. When we decide that 5% of ȳs that are furthest from
H0 are just too rare, we are deciding that we will make a type I error in 5% of the parallel universes
(or in 5% of other similar situations). That is, if we conduct thousands of scientific studies where we
always use α = 5%, in 5% of those studies where we reject the null, we will be doing so falsely.

In reality, we do not know the population values, so we will never know if we have made a type
I error or not. That is, the idea of type I error tells us nothing about the particular sample that we
are working with. It only tells us something about what happens through repeated applications of our
tested procedure.

3.3.3 Type II error
There is another type of error we can make. There are two possibilities for H0: either it is true or false.
In type I error, we considered that H0 is actually true. If we consider that H0 is actually false, then we
make a type II error if we fail to reject. The probability of a type II error is:

Pr(type II error) = Pr(fail to reject H0 | H0 is false) (3.7)

If H0 is actually false, one of two things can happen: we “reject” or we “fail to reject”. The probabilities
of both of these events must sum to 1 (something must happen). So:

Pr(1 − type II error) = Pr(reject H0 | H0 is false) (3.8)

Equation (3.8) is called the power of the test. We want the power to be as high as possible. That is, we
do not want to make a type II error, and we want the probability of rejection to be as high as possible
when H0 is actually false.
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Determining the type II error (and power) of a test is difficult or impossible. This is because power
depends on knowing the unobservable population. The concept is useful, however, when we are trying
to find the “best” test available. In may be possible to determine that some ways of testing are more
powerful than others, even though we may not know what the actual numbers are.

3.3.4 Test statistics
A test statistic is a convenient way of assessing the null hypothesis, and provides an easier way to obtain
a p-value. If we wanted to use the above testing procedure for different problems, we would have to
“graph” a different normal curve (similar to the one in figure 3.2), and calculate a different area under
the curve, for each testing problem. Decades ago, calculating an area under the normal curve was
difficult (now it is easily done by computers). Consequently, a method was devised so that every such
testing problem would use the standard normal curve. That way, different areas under the curve could
be tabulated for various values on the x-axis.

To standardize a variable, we subtract its mean and divide by its standard deviation. This creates
a new normal random variable from the old one, called a “standard normal” variable. For example, let
y ∼ N(µy, σ2

y). Create a new variable z where:

z = y − µy

σy
(3.9)

Now, z is still normally distributed, but has mean 0 and variance 1 since

E[z] = E[y − µy] = E[y] − µy = µy − µy = 0

and

Var[z] = Var
[

y

σy

]
= Var[y]

σ2
y

=
σ2

y

σ2
y

= 1

(refer to the rules of mean and variance).
How is this helpful? Recall the sampling distribution of ȳ under the null hypothesis: ȳ ∼ N(µy,0, σ2

y/n).
Create a new variable z. Subtract µy,0 (the mean of ȳ if the null is true) from ȳ. Now z has mean 0 (if
the null is actually true). Divide by the standard error (standard error = the standard deviation of an
estimator) of ȳ, and z has variance of 1. That is:

z = ȳ − µy,0√
σ2

y/n
∼ N(0, 1) (3.10)

This is the “z test statistic” for the null hypothesis that µy = µy,0. If the null is true, then ȳ
should be close to µy,0, implying that z should be close to 0. The probability of observing a ȳ further
away from H0 than what we just observed from the sample is obtained by plugging ȳ and µy,0 into
the z statistic formula, and calculating a probability using the standard normal distribution. From our
heights example, the z statistic is:

z = 174.1 − 173√
39.7
20

= 0.78

Now, the question: “what is the probability of getting further away than 174.1 from the null hypoth-
esis of 173?” has just been translated to: “What is the probability of a N(0, 1) variable being greater
than 0.78 (or less than -0.78)?” So, as you may have guessed:

Pr(z > 0.78) = 0.22 (3.11)

Since all such testing problems can be standardized, we only need to calculate the area under the
curve for several possible z values. These were tabulated long ago, and are reproduced in Table (3.2).
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3.3.5 Critical values
Critical values are the most extreme values allowable for the test statistic, before the null hypothesis is
rejected. Suppose that we choose a 5% significance level for our test. This means that if we receive a
p-value that is less than 0.0250 in Table 3.2, we should reject the null hypothesis (since 2.5%×2 = 5%).
If we use Table 3.2 to find the z statistic that corresponds to a significance level, we are finding the
critical value for the test. According to Table 3.2, we see that a p-value of 0.0250 corresponds to a z
statistic of 1.96. This is the 5% critical value. We know that if the z statistic that we calculate for our
test end up being greater than 1.96 or less than -1.96, we will get a p-value that is less than 0.05, and
we will reject the test.

3.3.6 Confidence intervals
A confidence interval corresponds to a significance level. Suppose that the significance level is 5%.
Then, the 95% confidence interval contains all of the values for µy,0 (all values for null hypotheses) that
will not be rejected at 5% significance.

What is the probability that our z statistic will be within a certain interval, if the null hypothesis
is true? For example, what is the following probability?

Pr (−1.96 ≤ z ≤ 1.96)? (3.12)

Using Table 3.2, we can figure out that this probability is 0.95. Note that -1.96 and 1.96 are the left
and right critical values, respectively, for a test with 5% significance. Now, to solve for the confidence
interval around ȳ, we will first substitute the formula for the z statistic into equation 3.12:

Pr
(

−1.96 ≤ ȳ − µy,0√
σ2

y/n
≤ 1.96

)
= 0.95 (3.13)

Finally, we solve equation 3.13 so that the null hypothesis µy,0 is in the middle of the probability
statement:

Pr
(

ȳ − 1.96 ×
√

σ2
y

n ≤ µy,0 ≤ ȳ + 1.96 ×
√

σ2
y

n

)
= 0.95 (3.14)

This just says that 1.96 × σ2
y/n is the maximum distance that the null hypothesis can be from the

sample average that we calculate, before we would get a p-value less than 0.05, and reject the test at
the 5% significance level.

An alternative interpretation of the confidence interval (other than containing the set of values for
the null that won’t be rejected), is the following. Out of many such 95% confidence intervals that we
construct in many hypothesis tests, 95% of such intervals will include the true population mean, µy.
Two common misinterpretations of a confidence interval are: (i) there’s a 95% probability that µy lies
within the interval; and (ii) the confidence interval includes µy 95% of the time. The reason these last
two interpretation are wrong has to do with the fact that the confidence interval is random and µy is
fixed.

3.4 Hypothesis Tests (unknown σ2
y)

So far we have assumed that σ2
y is known. We needed this σ2

y in order to calculate the variance of ȳ
(which is σ2

y/n), and calculate our p-value.
But, if we have to estimate µy, it is unlikely that we would know σ2

y . That is, if the population
mean is unknown, it is likely that the population variance would be unknown as well. Hence, we now
need to figure out how to estimate σ2

y from our sample of data, y.
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3.4.1 Estimating σ2
y

Recall that the variance for a discrete random variable is defined as:

Var(Y ) =
K∑

i=1
pi × (Yi − E[Yi])2

where Yi are the different values that the random variable can take, and pi are the probabilities of those
values occurring. A sensible way of estimating σ2

y may be to take the sample average of the squared
distances, but replacing E[Yi] with ȳ. That is, a natural estimator for σ2

y might be:

σ̂2
y = 1

n

n∑
i=1

(yi − ȳ)2 (3.15)

When we considered whether or not ȳ was a good estimator for µy, we first took the expected value
of ȳ, and determined that it was unbiased. That is, it turned out that E [ȳ] = µy. Well, it turns out
that σ̂2

y is a biased estimator! We won’t derive the expected value here, we will only state it:

E
[
σ̂2

y

]
= n − 1

n
σ2

y (3.16)

Equation 3.16 says that if we were to use equation 3.15 to estimate the variance of y, on average our
estimate would be a little bit too small compared to the truth (by a factor of (n − 1)/n). However, armed
with this knowledge, we can construct what is called a bias corrected estimator. If we just multiply
the right-hand-side of 3.16 by n/(n − 1), the bias disappears! That is, if we multiply the estimator σ̂2

y by
n/(n − 1), the resulting estimator is unbiased. This bias corrected estimator is usually denoted s2

y, where:

s2
y = n

n − 1 × σ̂2
y = n

n − 1 × 1
n

n∑
i=1

(yi − ȳ)2 = 1
n − 1

n∑
i=1

(yi − ȳ)2 (3.17)

3.4.2 The t-test
Now that we know how to estimate σ2

y , we can estimate the variance of the sample average using:

Estimated variance of ȳ =
s2

y

n

We can implement hypothesis testing by replacing the unknown σ2
y with its estimator s2

y. The z test
statistic now becomes:

ȳ − µy,0√
s2

y/n
= t

This is the t statistic. Because we have replaced σ2
y with s2

y (a random estimator) in the z statistic
formula, the form of the randomness of z has changed. The t statistic is no longer a standard normal
variable. It follows its own probability distribution, called the t distribution. When performing a t test,
the p-values are different than in Table 3.2. However, as the sample size grows, the t distribution becomes
the standard normal distribution. This means that, for sample sizes of approximately n > 100, using
the standard normal distribution (Table 3.2) instead of the t distribution, makes very little difference.
For the purposes of this course, we will assume that the sample size is large enough that the t statistic
follows a standard normal distribution.

Finally, note that confidence intervals can be constructed, in practice, by replacing the unknown σ2
y

in equation 3.14 with the estimator s2
y. As long as the sample size is reasonably large, we do not have

to worry about replacing the critical values in the confidence interval formula (for example, 1.96) with
critical values from the t distribution. An example of performing a t test and constructing a confidence
interval, is left for the Review Questions.
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3.5 Review Questions
1. Prove that ȳ is a random variable. Why might ȳ follow a Normal distribution? What is the

sampling distribution for ȳ?
2. Derive the mean and variance of ȳ. How does this help us determine if ȳ is: (i) unbiased; (ii)

efficient; and (iii) consistent?
3. Assume that yi ∼ (µy, σ2

y), and that yi is i.i.d. Let µ̃y = y1+yn

2 . Is µ̃y an unbiased estimator for
µy? Compare the variance of µ̃y to the variance of ȳ.

4. Assume that yi ∼ (µy, σ2
y), that yi is i.i.d., and that the sample size, n, is even. Let

µ̂y = 1
2n

y1 + 3
2n

y2 + 1
2n

y3 + 3
2n

y4 + · · · + 1
2n

yn−1 + 3
2n

yn

Is µ̂y an unbiased estimator for µy? Compare the variance of µ̂y to the variance of ȳ.
5. Refer to the above two questions. Are µ̃y and µ̂y consistent estimators for µy?
6. Perform a t test of the null hypothesis in equation (3.5), using the heights data from table 3.1.

Also, construct 95% and 90% confidence intervals around ȳ.

3.6 Answers
1. The formula for ȳ is 1/n

∑n
i=1 yi. It is a linear function of the random yi values, so it is a ran-

dom variable itself. ȳ might follow a Normal distribution due to the central limit theorem, which
(loosely speaking) says that if we add up random variables the resulting sum tends to be Nor-
mally distributed. Note the summation operator in the formula for ȳ. Finally, the full sampling
distribution can be written as: ȳ ∼ N(µy, σ2

y/n).
2. The mean of ȳ is derived in equation (3.2) and the variance in equation (3.3). (i) The mean of ȳ

tells us that the estimator is unbiased. (ii) The variance of ȳ allows us to compare to the variance
of all other possible linear and unbiased estimators of µy, and determine that σ2

y/n is smallest,
and thus ȳ is efficient. (iii) The n in the denominator of σ2

y/n shows us that ȳ is consistent. We
know that the estimator is unbiased, and as the sample size grows, the variance of ȳ goes to zero.
This means that with a infinitely large sample size, our estimator would give the value µy with
probability 1.

3. To derive the bias of the estimator µ̃y, we compare its expected value to µy:

E [µ̃y] = E
[

y1 + yn

2

]
= 1

2E [y1 + yn] = 2µy

2 = µy

Since the expected value of the estimator is equal to µy, the estimator is unbiased.
The variance of µ̃y is:

Var [µ̃y] = Var
[

y1 + yn

2

]
= 1

4Var [y1 + yn]

The i.i.d. assumption gives us the independence of the yi values, allowing us to expand within
the variance operator:

1
4Var [y1 + yn] = 1

4 (Var [y1] + Var [yn]) =
2σ2

y

4 =
σ2

y

2

Comparing this variance to the variance of the sample average, we find:

σ2
y

2 >
σ2

y

n
; n > 2

which is not surprising result, since we know that ȳ is an efficient estimator.
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4. Again, we start by taking the expected value of the estimator:

E [µ̂y] = E
[

1
2ny1 + 3

2ny2 + 1
2ny3 + · · · + 3

2nyn

]
= 1

2nµy + 3
2nµy + 1

2nµy + · · · + 3
2nµy

= µy

So, µ̂y is an unbiased estimator.
Next, we find the variance of µ̂y, again making use of the independence assumption:

Var [µ̂y] = Var
[

1
2ny1 + 3

2ny2 + 1
2ny3 + · · · + 3

2nyn

]
= 1

4n2 Var [y1] + 9
4n2 Var [y2] + . . .

= 1
4n2 σ2

y + 9
4n2 σ2

y + . . .

= 5
4n

σ2
y

We can see that this variance is larger than the variance of ȳ, which is another illustration of the
efficiency property of ȳ.

5. µ̃y (for example) is a consistent estimator if limn→∞ E[µ̃y] = µy and limn→∞ Var[µ̃y] = 0. We
have already shown that the estimator is unbiased, so the first condition is satisfied. However, the
variance of this estimator does not go to 0 as the sample size increases, so this estimator is not
consistent! That is:

lim
n→∞

σ2
y

2 =
σ2

y

2

On the other hand, the estimator µ̂y is consistent, since there is an n in the denominator of 5
4nσ2

y .
6. The null and alternative hypotheses are:

H0 : µy = 173
HA : µy ̸= 173

The sample mean and the sample variance are ȳ = 174.1 and s2
y = 53.0. The sample size is n = 20.

The t statistic is:

t = 174.1 − 173√
53.0/20

= 0.68

Assuming that the sample size is large enough (even though n = 20 is too small), we can use the
standard Normal distribution, and table 3.2 to find that the p−value = 0.2483 × 2 = 0.5. We fail
to reject the null hypothesis.
The 95% confidence interval is:

ȳ ± 1.96 ×
√

s2
y/n = 174.1 ± 1.96 × 1.63 = [170.9, 177.3]

For the 90% confidence interval, we need to change the critical value of 1.96. Using table 3.2, we
find the z value which has 5% area under the curve (5% × 2 = 10% significance, 100% - 10% =
90% confidence). The 10% critical value is 1.64, so the 90% confidence interval is:

ȳ ± 1.64 ×
√

s2
y/n = 174.1 ± 1.64 × 1.63 = [171.4, 176.8]



3.6 Answers 42

Table 3.2: Area under the standard normal curve, to the right of z.
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002



Chapter 4

Ordinary Least Squares (OLS)

In this chapter, we discuss a method to estimate the marginal effect of one variable on another. Economic
models typically imply that one variable causes or determines another variable. Seldom (or never) does
the economic model quantify the marginal effect, however. We need data and econometrics in order to
estimate a number for the marginal effect.

We begin the chapter with two motivating examples. They are meant to show that many simple
economic models can be represented through the equation for a line. We then proceed to estimate this
line uses data. The method that we use to fit a straight line through data points is ordinary least squares
(OLS) or just least squares. We will make some simplifying assumptions, and discuss the properties of
the OLS estimator.

4.1 Motivating Example 1: Demand for Liquor
How much less alcohol will people consume if we raise the price? In first-year microeconomics you
learned about the law of demand. The quantity demanded of a product should depend on its price (and
other things):

Qd = a + bP (4.1)

where a is the intercept of the demand “curve”, and b is the slope. See figure 4.1. You learned that the
slope of the demand curve, b, depends on the type of good. For example, necessities such as medicine
should have relatively flatter demand curves than luxuries such as a diamonds.

Estimating the slope of the demand curve is important for policy makers who might want to affect
the quantity demanded of a good. For example, we might want to reduce consumption of alcohol or
cigarettes by increasing price (taxing them). But before we fiddle with the price of these products, we
should estimate how much quantity demanded will change given a change in price (if it changes at all).

Figure 4.1: A typical demand “curve”. Note this is an “inverse” demand curve (quantity demanded is
on the vertical axis, and price on the horizontal axis).

Qd

P

a

b



4.2 Motivating Example 2: Marginal Propensity to Consume 44

Figure 4.2: Per capita consumption, and price, of spirits. Choosing a line through the data necessarily
chooses the slope of the line, b, which determines how much Qd decreases for an increase in P .
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Using data from Prest (1949), we plot the yearly (from 1870 to 1938) per-capita consumption of
spirits (in proof gallons), and the relative price of spirits (deflated by a cost-of-living index). See figure
4.2. How should we fit a line through the data in figure 4.2? If we can pick a “good” line, then we will
have a good estimate for the slope, b. This estimated b could then be used to determine how much
alcohol consumption will decrease if we increase the tax on alcohol by $1, for example. Note that b is
the marginal effect of a change in price of spirits, on the quantity demanded of spirits, holding all else
constant.

4.2 Motivating Example 2: Marginal Propensity to Consume
This example uses data on total disposable income and consumption (in millions of Pounds) from
1971-1985 (quarterly) in the U.K. (Verbeek and Marno, 2008). The data is shown in figure 4.3.

An increase in consumption is induced by an increase in income, but not all of the increase in income
is consumed. Marginal propensity to consume is the proportion of an increase in disposable income that
individuals spend on consumption:

MPC = ∆C

∆Y
(4.2)

where ∆C is the change in consumption “caused” by the change in income, ∆Y . John Maynard Keynes
supposed that the MPC should be less than one, but without data and econometrics there is no way
to put an actual number to the MPC.

We can also write the relationship between consumption and disposable income through the equation
of a line:

C = a + MPC × Y (4.3)

where a is again the intercept of the line (representing the amount of consumption with disposable
income of zero), and where this time MPC is the slope of the line. Remember that MPC is the thing
we are trying to estimate.

One of the points we are trying to make here is that many economics models can be represented by
the equation of a straight line. If we can figure out how to estimate the line, then we have an estimate
for the slope (the marginal effect), which is of great practical usefulness.
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Figure 4.3: Income and consumption in the U.K. (Verbeek and Marno, 2008).
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The next question is: how should we fit a line through data points (like the ones in figures 4.2 and
4.3)? Before we determine how to pick the line, however, we need to introduce some definitions and
general notation.

4.3 The Linear Population Regression Model
The general regression model is:

Yi = β0 + β1Xi + ϵi (4.4)

• X is called the independent variable or regressor. It is the variable that is assumed to cause the
Y variable. In the “Demand for Liquor” example, this variable was price (P ). See equation 4.1.
In the MPC example the regressor was income. See equation 4.3.

• Y is the dependent variable. This variable is assumed to be caused by X (it depends on X). In the
demand example the dependent variable was quantity demanded (Qd) and in the MPC example
it was consumption (C).

• β0 is the population intercept. It was labelled a in both examples. It is unobservable, but we can
try to estimate it.

• β1 is the population slope. When X increases by 1, Y increases by β1. This is the primary object
of interest, and is unobservable. We want to estimate β1. β1 is interpreted as the marginal effect
in many economics models.

• ϵ is the regression error term. It consists of all the other factors or variables that determine
Y , other than the X variable. All of these other variables causing Y are combined into ϵ. ϵ is
considered to be a random variable since we can not observe it.

• i = 1, . . . , n. The subscript i denotes the observation. n is the sample size. For example, Y4 refers
to the fourth Y observation in the data set.

4.3.1 The importance of β1

Note that in equation 4.4, the object of interest is β1. It is the thing we are trying to estimate. It is the
causal, or marginal effect, of X on Y . That is, a change in X of ∆X causes a β1 change in Y :

∆Y

∆X
= β1
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Figure 4.4: A simple data set with the estimated OLS line in blue. b0 is the OLS intercept, and b1 is
the OLS slope.
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4.3.2 The importance of ϵ

ϵ (epsilon) is the random component of the model. Without ϵ, statistics/econometrics is not required.
ϵ represents all of the other things that determine Y , other than X. They are all added up and lumped
into this one random variable. Because we can not observe all of these other factors, we consider them
to be random. The fact that ϵ is random makes Y random as well.

Later, we will make some assumptions about the randomness of ϵ, that will ultimately determine
the properties of the way that we choose to estimate β1.

4.3.3 Why it’s called a population model
Equation 4.4 is called a “population” model because it represents the true, but unknown way in which
the Y variable is “created” or “determined”. β0 and β1 are unknown (and so is ϵ). We will observe a
sample of Y and X, and use the sample to try to figure out the βs.

4.4 The estimated model
Our primary goal is to estimate β1 (the marginal effect of X on Y ), but to do so we’ll also have to
estimate β0. This estimated intercept and slope will define a straight line. These estimates will be
denoted b0 and b1, the OLS intercept and slope.

Let’s start with a very simple example using data that I made up: Y = {1, 4, 5, 4}, X = {2, 4, 6, 8}.
The data, and estimated OLS line, are shown in figure 4.4. The OLS estimated intercept is b0 = 1, and
the estimated slope is b1 = 0.5.

We still don’t know how to get b0 and b1! Before we decide how to fit a straight line through some
data points, we need to define two terms first.

4.4.1 OLS predicted values (Ŷi)
The OLS predicted (or fitted) values, are the values for Y that we get when we “plug” the X values back
into the estimated OLS line. These predicted Y values are denoted by Ŷ . We can find each predicted
value, Ŷi, by plugging each Xi into the estimated equation.

In general, the estimated equation (or line) is written as:

Ŷi = b0 + b1Xi. (4.5)
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Figure 4.5: The OLS predicted values shown by ×.
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For our simple example, equation 4.5 becomes Ŷi = 1 + 0.5Xi, and each OLS predicted values is:

Ŷ1 = 1 + 0.5(2) = 2
Ŷ2 = 1 + 0.5(4) = 3
Ŷ3 = 1 + 0.5(6) = 4
Ŷ4 = 1 + 0.5(8) = 5

These OLS predicted values are added to the plot in figure 4.5. Notice how each predicted value lies on
the blue line, directly above or below the data point.

4.4.2 OLS residuals (ei)
An OLS predicted value tells us what the estimated model predicts for Y when given a particular value
of X. When we plug in the sample values for X (as we did in the previous section), we see that the
predicted values (Ŷi) don’t quite line up with the actual Yi values. The differences between the two are
the OLS residuals. The OLS residuals are like prediction errors, and are determined by:

ei = Yi − Ŷi (4.6)

Using equation 4.6 for our simple example, each OLS residual is:

e1 = 1 − 2 = −1
e2 = 4 − 3 = 1
e3 = 5 − 4 = 1
e4 = 4 − 5 = −1

These OLS residuals are indicated in figure 4.6. They are the vertical distances between the actual data
points (the circles) and the OLS predicted values (the ×).

Each data point (Yi) is equal to its predicted value, plus its residual. That is, we can rearrange
equation 4.6 and write:

Yi = Ŷi + ei
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Figure 4.6: The OLS residuals (ei) are the vertical distances between the actual data points (circles)
and the OLS predicted values (×).
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or, using equation 4.5 for the definition of Ŷi:

Yi = b0 + b1Xi + ei, (4.7)

which will be useful in the next chapter. Note that equation 4.7 is the observable counterpart to the
unobservable population model in equation 4.4.

4.5 How to choose b0 and b1, the OLS estimators
Now that we have defined the OLS residuals (ei), we can define the OLS estimators b0 and b1 by coming
up with an equation that will tell us how to use the X and Y data.

The OLS estimators are defined in the following way. They are the values for b0 and b1 that
minimize the sum of squared vertical distances between the OLS line and the actual data points (Yi).
These vertical distances have already been defined as the OLS residuals (ei). So the “objective” is to
choose b0 and b1 so that

∑n
i=1 e2

i is minimized. This is an optimization problem from calculus. Formally
stated, the OLS estimator is the solution to the minimization problem:

min
b0,b1

n∑
i=1

e2
i (4.8)

Substituting the value for ei (equation 4.6) into equation 4.8:

min
b0,b1

n∑
i=1

(
Yi − Ŷi

)2

and substituting in the value for Ŷi (from equation 4.5) we get:

min
b0,b1

n∑
i=1

(Yi − b0 − b1Xi)2 (4.9)

To solve this minimization problem, we take the partial derivatives of
∑n

i=1 e2
i with respect to b0 and b1,

set those derivatives equal to zero, and solve for b0 and b1. That is, we need to solve the two equations:
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∂
(∑n

i=1 e2
i

)
∂b0

= 0

∂
(∑n

i=1 e2
i

)
∂b1

= 0

We leave the derivation for an exercise, and only write the solution here:

b1 =
∑n

i=1

[(
Yi − Ȳ

) (
Xi − X̄

)]
∑n

i=1

(
Xi − X̄

)2

b0 = Ȳ − b1X̄

(4.10)

These equations tell us how to pick a line (by picking an intercept and slope) in order to minimize the
sum of squared vertical distances between the chosen line and each data point. The next question is,
why should we choose a line in such a way?

4.6 The Assumptions and Properties of OLS
So, what’s so great about OLS? There are many other ways that we could fit a line through some data
points:

• instead of vertical distances, we could minimize the sum of horizontal or orthogonal distances
• instead of taking the sum of squared distances, we could take the sum of absolute distances
• we could divide the sample into two parts, get the average Y and X coordinates, and connect the

dots
• we could pick (randomly or not) any two different data points and connect them

The main point here is that there are many ways that we could fit a line, so we should wonder why
OLS is so special. Some of these alternatives above are obviously silly, but some lead to alternative
estimators that have merit in various situations.

Recall that estimators are random variables (see Chapter 3). The OLS slope and intercept estimators
have sampling distributions, with a mean and a variance. The reason why we use OLS is because these
random estimators have good statistical properties (under certain assumptions). Here, we list the
assumptions, and return to them at various stages throughout the book.

4.6.1 The OLS assumptions
A1 The population model is linear in the βs.
A2 There is no perfect multicollinearity between the X variables.
A3 The random error term, ϵ, has mean zero.
A4 ϵ is identically and independently distributed.
A5 ϵ and X are independent.
A6 ϵ is Normally distributed.

4.6.2 The properties of OLS
Provided that the above six assumptions hold:

• The OLS estimator is unbiased.
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• The OLS estimator is efficient.
• The OLS estimator is consistent.
• The OLS estimator is Normally distributed.

Note that not all assumptions are needed for each of the above four properties. Additionally, some of the
assumptions A1 - A6 are often unrealistic. Testing for the validity of these assumptions, re-evaluating
the properties of the OLS estimator in the absence of each assumption, and figuring out how to recover
unbiasedness, efficiencyand consistency, would lead to some different estimators, and would form the
basis for future econometrics courses.

4.7 Review Questions
1. Let the sample data be Y = {5, 2, 2, 3} and X = {5, 3, 5, 3}.

a) Write down the population model.
b) Calculate the OLS estimated slope and intercept, using equation 4.10.
c) Interpret these estimates.
d) Calculate the OLS predicted values and residuals.
e) Using R, verify your answer in part (b).

2. How are the formulas for b1 and b0 derived?
3. Explain why, even if assumption A.6 does not hold, the OLS estimator may still be normally

distributed.
4. Why is the ϵ term needed in equation 4.4?
5. Download the MPC data using:

mpcdata <- read.csv("https://rtgodwin.com/data/mpc.csv")

Use R to aid in the following exercises.

a) Write down the population model you are trying to estimate. Describe the components of
this model.

b) Plot the data.
c) Calculate the OLS estimated slope and intercept.
d) Interpret these estimates.
e) Add the estimated regression line to the plot of the data.

4.8 Answers
1. a) The assumed population model is Yi = β0 +β1 +ϵ. It is assumed that the X variable “causes”

the Y variable. The Y and X data has been given to us. β0 and β1 are unknown parameters
to be estimated. ϵ represents all the other factors (or variables) that cause Y but that are
unobserved.

b)

Ȳ = 3, X̄ = 4

b1 = (5 − 3)(5 − 4) + (2 − 3)(3 − 4) + (2 − 3)(5 − 4) + (3 − 3)(3 − 4)
(5 − 4)2 + (3 − 4)2 + (5 − 4)2 + (3 − 4)2

= 0.5
b0 = 3 − 0.5 × 4 = 1

c) b1 is the estimated slope, or marginal effect. Numerically, the values b1 = 0.5 means that it is
estimated that when X increases by 1, Y will increase by 0.5. b0 is the estimated intercept.
Numerically, when X is 0, it is estimated that Y is 1.
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d)

Ȳ1 = 1 + 0.5(5) = 3.5
Ȳ1 = 1 + 0.5(3) = 2.5
Ȳ1 = 1 + 0.5(5) = 3.5
Ȳ1 = 1 + 0.5(3) = 2.5
e1 = 5 − 3.5 = 1.5
e2 = 2 − 2.5 = −0.5
e3 = 2 − 3.5 = −1.5
e4 = 3 − 2.5 = −0.5

e) In R, enter the following three commands:

y <- c(5,2,2,3)
x <- c(5,3,5,3)
lm(y ~ x)

and you should see the following output:

Call:
lm( formula = y ~ x)

Coefficients :
( Intercept ) x

1.0 0.5

2. The formulas for the OLS estimator are derived by minimizing the sum of squared OLS residuals.
This involves solving an optimization problem in calculus. The derivatives of the sum of squared
residuals, with respect to b0 and b1, are set equal to 0 and solved, providing the formulas in
equation 4.10.

3. If assumption A.6 holds, then the OLS estimators will be Normally distributed. This is because,
by the population model (equation 4.4), Y is a linear function of ϵ, hence Y is also Normally
distributed. Furthermore, because b1 and b0 are linear functions of Y , they are also Normally
distributed.
However, even without A.6, the OLS estimator may still be Normally distributed. This is again
due to the central limit theorem. Look again at the formula for the OLS estimator (equation 4.10)
and note the summation sign. Since the OLS estimator involves summing the random variable Y ,
as long as the sample size is large enough, the resulting sum should be Normally distributed.

4. The error term is needed in order to represent all of the other factors that influence Y , besides
the X variable. Since these other factors (or variables) are unobserved, we consider them to be
random, and add them all up into one term. ϵ represents the randomness in the population model,
without which there would be no need for statistics or econometrics.

5. a) The population model that we are trying to estimate is the consumption model from equation
4.3: C = β0 + β1 × Y + ϵ, where C is the independent variable (the “Y ” variable), β1 is the
MPC, Y is the independent variable (the “X” variable), ϵ represents all the other variables
that determine C, and where β0 doesn’t have much economic interest.

b) First, you must load the data into R using the following command:

mpcdata <- read.csv("https://rtgodwin.com/data/mpc.csv")

Once the data has been loaded, enter the following command in order to plot the data:
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plot(mpcdata$income, mpcdata$consumption, main="Consumption and
Income in the U.K.")

c) In order to calculate the OLS estimates for the intercept and slope, run the following com-
mand in R:

lm(consumption ~ income, data=mpcdata)

d) The estimated slope on income is the estimated marginal propensity to consume. That is,
when income increases by 1, it is estimated that consumption will increase by 0.869. The
estimated intercept of 176.848 is the amount of consumption when income (or GDP) is zero,
and since GDP is never zero, the intercept doesn’t hold much economic interest.

e) In order to add the estimated regression line to your plot of data, use the following command
(choose your own colour!):

abline(lm(consumption ~ income, data=mpcdata), col = "red")



Chapter 5

OLS Continued

In this chapter, we discuss three extensions of OLS. First, we introduce the regression R-square, which
is a way to evaluate how well the estimated OLS regression line fits the data. Second, we discuss how
to test a null hypothesis involving the βs (usually β1). Third, we discuss the use of dummy variables in
econometric models.

5.1 R-squared
R-squared is a “measure of fit” of the regression line. It is a number between 0 and 1 (as long as
the model contains an intercept) that indicates how close the data points are to the estimated line.
More accurately, the regression R-squared (R2) is the portion of variance in the Y variable that can be
explained by variation in the X variable.

Look again at the assumed population model:

Yi = β0 + β1Xi + ϵi

The assumption is that changes in X lead to changes in Y . We are using the observed changes in both
variables to choose the regression line (via OLS). But, changes in X aren’t the only reason that Y
changes. There are unobservable variables in the error term (ϵ) that lead to changes in Y . How much
of the changes in Y are coming from X (not ϵ)? R2 helps answers this question.

The R2 can also be thought of as an overall measure of how well the model explains the Y variable.
That is, we are using information in X to explain or predict Y by estimating a model. How well does the
estimated regression line “fit” the data? How well does the model explain the Y variable? R2 provides
a measure to address these questions. Let’s reiterate the interpretations of R2 before we derive it. R2

measures:

• how well the estimated model explains the Y variable.
• how well changes in X explain changes in Y .
• how well the estimated regression line “fits” the data.
• the portion of the variance in Y that can be explained using the estimated model.

Figure 5.1 shows the estimated OLS regression line fitted to both the demand for spirits and demand
for cigarettes data. The estimated regression line seems to fit the data better, or explain more of the
variation in Q, for spirits rather than for cigarettes. We will find that the R2 is indeed higher for the
spirits data. In some sense, the R2 can be used to compare OLS regressions.

Figure 5.2 shows a hypothetical situation where, if all data moves vertically further away from the
estimated regression line, the regression line stays the same, but the R2 decreases. That is, both the
red (triangles) and blue (circles) provide the same estimated b1, but the line fits the red data better.
Changes in X account for more of the changes in Y for the red data. For the blue data, the unobserved
factors (in ϵ) are accounting for more of the changes (or variation) in Y .
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Figure 5.1: Which estimated regression line fits better? Demand for spirits (left) and demand for
cigarettes (right). We might expect the regression on the left to have a higher R2.
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Figure 5.2: Two different data sets. The estimated regression line for both data sets is the same. The
blue data points (circles) are twice as far (vertically) from the regression line as are the red data points
(triangles). For red data, R2 = 0.95. For blue data, R2 = 0.82.
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5.1.1 The R2 formula
Now, we will derive the R2 statistic, beginning with the definition: “R-squared is the portion of variance
in Y that can be explained using the estimated model.” The population model is (equation 4.4):

Yi = β0 + β1Xi + ϵi

The estimated model is (equation 4.7):

Yi = b0 + b1Xi + ei

Recall that the OLS predicted value is (equation 4.5):

Ŷi = b0 + b1Xi

So:

Yi = Ŷi + ei (5.1)

Equation 5.1 shows that each Yi value has two parts: a part that can be explained by OLS (Ŷi), and
a part that cannot (ei). To get R2, we’ll start by taking the sample variance of both sides of equation
5.1. This will break the variance in Y up into two parts: variance the we can explain (variance in Ŷi),
and variance that we can’t explain (variance in ei).

Recall that in Chapter 3, when we wanted to estimate the variance of y, we used equation 3.17,
which is the sample variance:

s2
y = 1

n − 1

n∑
i=1

(yi − ȳ)2

Taking the sample variance of both sides of equation 5.1 we get (there is no sample covariance because
Ŷi and ei are independent):

s2
Y = s2

Ŷ
+ s2

e

Or:

1
n − 1

n∑
i=1

(
Yi − Ȳ

)2
= 1

n − 1

n∑
i=1

(
Ŷi − ¯̂

Y
)2

+ 1
n − 1

n∑
i=1

(ei − ē)2 (5.2)

To simplify equation 5.2, we’ll make use of three algebraic properties:

• the (n − 1) cancel out
• ¯̂

Y = Ȳ
• ē = 0

Using these three properties, equation 5.2 becomes:∑(
Yi − Ȳ

)2
=
∑(

Ŷi − Ȳ
)2

+
∑

(ei)2 (5.3)

Notice that the terms in equation 5.3 are “sums of squares”, and equation 5.3 is often written as:

TSS = ESS + RSS (5.4)

where:

• TSS - total sum of squares
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Figure 5.3: The estimated regression line is essentially flat: b1 = 0. Observed changes in X are not at
all helpful in predicting changes in Y . There is “no fit”, and R2 = 0.00.

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

2
4

6
8

X

Y

• ESS - explained sum of squares
• RSS - residual sum of squares

Now, we return to our definition of R2: “the portion of variance in Y that can be explained using the
estimated model.” This portion is written as:

R2 = ESS

TSS
(5.5)

We can also re-write the formula for R2 using equation 5.4:

R2 = 1 − RSS

TSS
(5.6)

5.1.2 “No fit” and “perfect fit”
What is the worst possible situation, in terms of the “fit” of the estimated regression line? If the X
variable cannot explain any of the changes/variation in the Y variable, then the estimated model (the
estimated regression line) will be useless.

If the X observations are not useful in explaining changes in the Y observations (that is, if the
sample X and Y data are independent), then b1 = 0. In this case, we have a situation of “no fit”, where
R2 = 0. See figure 5.3.

To see algebraically why R2 = 0 when b1 = 0, we start by looking at equation 4.5 again:

Ŷi = b0 + b1Xi

So, if b1 = 0 then each predicted Ŷi value is equal to just b0 (all the predicted values are the same).
Additionally, when b1 = 0, by looking at the equation for the OLS intercept estimator, we see that:

b0 = Ȳ − b1Xi = Ȳ

This mean that, if b1 = 0, each predicted value is equal to the sample average of Y : Ŷi = Ȳ . Hence,
ESS = 0:

ESS =
∑(

Ŷi − Ȳ
)2

=
∑(

Ȳ − Ȳ
)2

= 0,
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Figure 5.4: The estimated regression line exactly passes through each data point. Observed changes in
X perfectly predict changes in Y . There is “perfect fit”, and R2 = 1.
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and R2 = 0.
Now, let’s consider the opposite extreme: a situation where we have a “perfect fit”. Imagine that

observed changes in X could perfectly predict a change in Y . That is, if we knew the value of X, we
would exactly know the value of Y with certainty. What would our sample of data have to look like in
order for this to be the case? See figure 5.4.

In order for the estimated regression line to fit the data perfectly, all of the observed data points
must line up in a straight line. If this were so, the estimated line would pass through each data point,
the OLS predicted values (Ŷi) would be exactly equal to the actual values (Yi), and there would be no
prediction error (ei = 0 ∀ i). Algebraically, Ŷi = Yi, so that ESS = TSS, and R2 = 1.

The two cases that we have just considered, “no fit” and “perfect fit”, are extremes. They should not
actually occur in practice. In reality, the fit of the line will be somewhere between these two extremes.
If the worst that can happen is “no fit” and the best is “ perfect fit”, then 0 ≤ R2 ≤ 1.

5.2 Hypothesis testing
We’ll begin this section by looking at the variance of the OLS slope estimator (Var [b1]). There are
three reasons to get this formula:

1. Looking at it will provide insight into what determines the accuracy (a smaller variance) of the
estimator.

2. It is required to prove that OLS is an efficient estimator, and therefore is BLUE.
3. It is needed for hypothesis testing.

5.2.1 The variance of b1

In chapter 3, we derived the variance of the estimator, ȳ. Similarly, b1 is a random variable, since it
is obtained from a formula involving the random sample {Yi, Xi}, and it is common to consider the
variance of a random variable. However, deriving the variance of the OLS estimator is too difficult for
this course, and we simply write the result:

Var [b1] = σ2
ϵ∑

X2
i − (

∑
Xi)2

n

, (5.7)
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where σ2
ϵ is the variance of the error term ϵ, n is the sample size, and in the denominator we see

something that looks like the sample variance of Xi. From equation 5.7, it can be seen that:

• Var [b1] decreases as n increases.
• Var [b1] decreases as the sample variation in X increases.
• Var [b1] decreases as variation in ϵ decreases.

We want our estimator to have as low a variance as possible! A lower variance means that, on average,
we have a higher probability of being close to the “rights answer” (provided the estimator is unbiased).
These factors that lead to a lower Var [b1] make sense:

• If we have more information (larger n), it should be “easier” to pick the right regression line.
• Since we are using changes in X to try to explain changes in Y , the bigger changes in X that we

observe, the easier it is to pick the regression line.
• The less unobservable changes there are (in ϵ that are causing changes in Y , the easier it is to

pick the regression line.

We could discuss a similar formula for Var [b0] as well, however, there is rarely any economic interest in
the model’s intercept that we omit the discussion.

A final note. Var [b1] is required in order to prove that OLS is efficient (the Gauss-Markov theorem).
Proving that an estimator is efficient requires that its variance is shown to be the smallest among all
other possible candidate estimators (in the Gauss-Markov theorem other candidate estimators are linear
and unbiased ones). The Gauss-Markov theorem is very important because it provides the reason for
why OLS should be used: provided (some of) assumptions A1-A6 hold, OLS is the best linear unbiased
estimator (BLUE) possible for estimating β1.

5.2.2 Test statistics and confidence intervals
Hypothesis testing in the context of OLS usually involves β1. That is, usually we want to test if a
marginal effect is equal to some value. For example, do similarly qualified women earn less than men?
Are the returns to education the same for men and women? If we raise the taxes on cigarettes, will
consumption decrease? These are all questions that can be answered by forming a null and alternative
hypothesis, collecting data, estimating, and rejecting or failing to reject the null. In the context of OLS,
a two-sided null and alternative hypothesis looks like:

H0 : β1 = β1,0

HA : β1 ̸= β1,0

A common hypothesis in economics is where the marginal effect is zero (X does not cause Y ), so that
the above null and alternative become:

H0 : β1 = 0
HA : β1 ̸= 0

As in chapter 3, we will begin with the z-test. In general, the z-statistic is determined by:

z−statistic = estimate − value of H0√
Var [estimator]

(5.8)

This z-statistic is Normally distributed with mean 0 and variance 1 (z ∼ N(0, 1)), if H0 is true and Ȳ
is Normal. In chapter 3, when our test involved the population mean, equation 5.8 became:

z = ȳ − µY,0√
σ2

Y /n
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In OLS, when we are testing the slope (marginal effect) of the model, equation 5.8 becomes:

z = b1 − β1,0√
Var [b1]

,

where b1 is the estimate that we actually get from the sample, β1,0 is the hypothesized value of the
slope, and Var [b1] is given by equation 5.7.

As was the case in chapter 3, however, it is not realistic that we would know the variance of b1. By
looking again at equation 5.7, we see that the unknown part is the variance of the error term, σ2

ϵ . If we
could estimate σ2

ϵ , we would have an estimate for the variance of b1, and we could use a t-test instead
of a z-test.

Recall that the population model is:

Yi = β0 + β1Xi + ϵi,

and that the estimated model is:

Yi = b0 + b1Xi + ei

Each unobservable part in the population model (β0, β1, ϵi) has an observable counter-part in the
estimated model. So, if we want to know something about ϵ we can use e. In fact, an estimator for the
variance of ϵ is the sample variance of the OLS residuals:

s2
ϵ = 1

n − 2

n∑
i=1

(ei − ē)2 = 1
n − 2

n∑
i=1

e2
i (5.9)

Why is the −2 in the denominator of equation 5.9? Recall that, in chapter 3, when we wanted to
estimate σ2

y we used the sample variance of y:

s2
y = 1

n − 1

n∑
i=1

(yi − ȳ)2

and that the −1 in the denominator was a degrees-of-freedom correction, so that the estimator is
unbiased. We only had (n − 1) pieces of information available to estimate σ2

y , after we had used up a
piece of information to get ȳ. The story is similar in equation 5.9. In order to get the OLS residuals,
we first have to estimate two things (b0 and b1):

ei = Yi − Ŷi = Yi − (b0 + b1Xi)

This uses up two pieces of information, leaving (n − 2) remaining when we are using the ei. Now that
we have an estimator for σ2

ϵ , we have an estimator for Var [b1] (we just replace the unknown σ2
ϵ with

s2
ϵ ):

ˆVar [b1] = s2
ϵ∑

X2
i − (

∑
Xi)2

n

And now, the t-statistic for testing β1 is obtained by substituting ˆVar [b1] for Var [b1] in the z-statistic
formula:

t = b1 − β1,0√
ˆVar [b1]

(5.10)
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The denominator of 5.10 is often called the standard error of b1 (like a standard deviation), and equation
5.10 is often written instead as:

t = b1 − β1,0
s.e. [b1] (5.11)

where s.e. [b1] stands for the estimated standard error of b1.
If the null hypothesis is true, the t-statistic in equation 5.11 follows a t-distribution with degrees

of freedom (n − k), where k is the number of βs we have estimated (two). To obtain a p-value we
should use the t-distribution, however, if n is large, then the t-statistic follows the standard Normal
distribution. For the purposes of this course, we shall always assume that n is large enough such that
t ∼ N(0, 1). To obtain a p-value, we can use the same table that we used at the end of chapter 3 (see
Table 3.2).

5.2.3 Confidence intervals
Confidence intervals are obtained very similarly to how they were in chapter 3. The 95% confidence
interval for b1 is:

b1 ± 1.96 × s.e. [b1] (5.12)

The 95% confidence interval can be interpreted as follows: (i) if we were to construct many such intervals
(hypothetically), 95% of them would contain the true value of β1; (ii) all of the values that we could
choose for β1,0 that we would fail to reject at the 5% significance level.

We can get the 90% confidence interval by changing the 1.96 in equation 5.12 to 1.65, and the 99%
C.I. by changing it to 2.58, for example.

5.3 Dummy Variables
A dummy variable is a variable that takes on one of two values (usually 0 or 1). A dummy variable is also
sometimes called a binary variable or a dichotomous variable. We will consider that the independent
variable (the regressor or “X” variable) in our population model (equation 4.4) is a dummy variable,
where:

Di =
{

0, if individual i belongs to group A

1, if individual i belongs to group B

Dummy variables are useful for estimating differences between groups, where groups “A” and “B”
can take on many definitions. For example, in labour economics and many other areas of economics, it
is common to use a dummy variable to identify the gender of the individual.

5.3.1 A population model with a dummy variable
Now, let’s consider a population model with a dummy:

Yi = β0 + β1Di + ϵi, (5.13)

where Di = 0 if the individual is female, Di = 1 if the individual is male, and Yi is the wage of the
individual. How do we interpret β1 from equation 5.13? Since Di is not a continuous variable, β1 is not
a marginal effect, and we cannot take the derivative of Y with respect to D when D is non-continuous.
Instead, let’s use conditional expectations to find the interpretation of β1.

Let’s consider the expected wage of a male worker:

E [Yi|Di = 1] = β0 + β1(1) + E [ϵi] = β0 + β1 (5.14)
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We have simply substituted in the population model (equation 5.13) for Yi, substituted in Di = 1, and
made use of assumption A.3 (E [ϵi] = 0). Now, let’s consider the expected wage of a female worker:

E [Yi|Di = 0] = β0 + β1(0) + E [ϵi] = β0 (5.15)

What is the difference between these two conditional expectations (equations 5.14 and 5.15)? β1! That
is:

E [Yi|Di = 1] − E [Yi|Di = 0] = β1 (5.16)

So, when the “X” variable is a dummy variable, the attached β is interpreted as the difference in
population means between the two groups.

5.3.2 An estimated model with a dummy variable
OLS works just fine when the right-hand-side variable is a dummy variable. The estimated model will
be the same as it was before:

Yi = b0 + b1Di + ei, (5.17)

where everything has the same interpretation as before, except that b1 is the estimated difference in
population mean of Y between the two groups as defined by the dummy variable. In fact, it turns out
that:

• b0 is the sample mean (Ȳ ) for Di = 0
• b0 + b1 is the sample mean for Di = 1
• b1 is the difference in sample means (be careful of the sign)

This means that, instead of using OLS, we could just divide the sample into two parts (using Di), and
calculate two sample averages! So why should we use OLS? At this stage, it looks like we are making
things more complicated than they need to be. However, in the next chapter, we will add more X
variables, so that we will not be able to get the same results by dividing the sample into two.

5.3.3 Example: Gender and wages using the CPS
The current population survey (CPS) is a monthly detailed survey conducted in the United States. It
contains information on many labour market and demographic characteristics. In this section, we will
use a subset of data from the 1985 CPS, to estimate the differences in wages between men and women.
To load the data, use:

cps <- read.csv("https://rtgodwin.com/data/cps1985.csv")

You will see many variables in the dataset. For now, we look at only a few:

• wage - hourly wage
• education - number of years of education
• gender - dummy variable for gender

To run an OLS regression of wage on gender, use the following command:

summary(lm(wage ~ gender, data = cps))

You should see the following output:
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Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 7.8789 0.3216 24.50 < 2e -16 ***
gendermale 2.1161 0.4372 4.84 1.7e -06 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.034 on 532 degrees of freedom
Multiple R- squared : 0.04218 , Adjusted R- squared : 0.04038
F- statistic : 23.43 on 1 and 532 DF , p-value: 1.703e -06

From this output, you should be able to answer the following questions:

• What is the sample mean wage for men and for women?
• What is the interpretation of b1?

We stated earlier that the results we obtain from regressing on a dummy variable are equivalent to what
we would obtain by dividing the sample into two parts (by gender). Let’s verify this using the CPS
data. In R, create subsets for men and women:

cps.m <- subset(cps, gender == "male")
cps.f <- subset(cps, gender == "female")

then take the difference in the sample mean wage between men and women:

mean(cps.m$wage) - mean(cps.f$wage)

[1] 2.116056

The difference is equal to b1, which is 2.1161! Also, note that the sample mean wage for women is b0:

mean(cps.f$wage)

[1] 7.878857

and the sample mean wage for men is b0 + b1:

mean(cps.m$wage)

[1] 9.994913

So, OLS is not needed in this case! All the estimates can be obtained by dividing the sample in two,
and taking sample averages. However, as soon as we have more than one “X” variable in the model, we
can no longer obtain the OLS estimates by simply dividing the sample into two.

5.4 Reporting regression results
We end this chapter with a concise and conventional way of reporting regression results. If you were
to see the results of an OLS regression in an economics paper or report, you would not see the ugly
R output above. If there are many variables in the regression (see the next chapter), the results may
be displayed in a table. However, if there are only a few variables in the regression, it is convenient to
report results in an equation with two lines.

For example, when we regress wage on gender:
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summary(lm(wage ~ gender), data = cps)

we could report the regression results as follows:

ˆwage = 7.88 + 2.12 × gendermale, R2 = 0.042
(0.32) (0.44)

(5.18)

Equation 5.18 conveys the estimated βs, as well as the estimated standard errors, and the R2. Verify
that you know where all of these numbers are coming from in the R output.

5.5 Review Questions
1. Derive the following expression for R2:

R2 = ESS

TSS
,

and show that R2 can be rewritten as:

R2 = 1 − RSS

TSS

2. Using diagrams, explain why 0 ≤ R2 ≤ 1.
3. Using equation 5.7, explain why having a larger sample is better.
4. Explain what s.e. [b1] is.
5. Using equation 5.13, explain how to interpret β0 and β1.
6. The following question refers to the regression of wage on gender using the CPS data. The

estimated results, equation 5.18, are repeated here:

ˆwage =10.00 − 2.12 × gender, R2 = 0.042
(0.30) (0.44)

a) What is the estimated wage-gender gap?
b) What is the sample mean wage for males and for females?
c) Test the hypothesis that there is no wage-gender gap.
d) Construct a 90% confidence interval for the wage-gender gap.
e) Interpret the value for R2.
f) Another researcher uses the same data, but defines the dummy variable in the opposite way.

What will be the estimated values for b0 and b1?

7. This question uses the CPS data set, which can be loaded into R using the following commands:

install.packages("AER")
library(AER)
data("CPS1985")
attach(CPS1985)

a) Estimate the returns (in hourly wages) of an additional year of education. Summarize your
results concisely in an equation.

b) Test the hypothesis that the returns to education are zero.
c) Construct a 95% confidence interval for the returns to education.
d) Interpret the value of R2.
e) What does the estimated model predict the hourly wages will be for high school graduates

and for university graduates?
f) What is the estimated value, in terms of hourly wage, of obtaining an undergraduate degree?
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5.6 Answers
1. A definition for R2, in words, is: the portion of variance in Y that can be explained by the

estimated model. Each Y observation can be written as a sum of two parts (a part that can be
explained using the X variable, and the left over unexplainable part):

Yi = Ŷi + ei

Taking the sample variance of both sides we get:

v̂ar[Yi] = v̂ar[Ŷi] + v̂ar[ei]

Note that there is no sample covariance between Ŷ and e because they are independent. Using
the formula for sample variance (from chapter 3, equation 3.17) into the above equation, we get:

∑
(Yi − Ȳ )2

n − 1 =
∑

(Ŷi − ¯̂
Y )2

n − 1 +
∑

(ei − ē)2

n − 1 (5.19)

Now, we make three simplifications to the above:

• the (n − 1) cancel
• ¯̂

Y = Ȳ (the sample mean of the OLS predicted values equals the sample mean of the actual
values)

• ē = 0 (the OLS residuals sum to 0)

Equation 5.19 becomes:∑
(Yi − Ȳ )2 =

∑
(Ŷi − Ȳi)2 +

∑
e2

i

The terms in the above equation are “sums-of-squares”, so that:

TSS = ESS + RSS (5.20)

Where TSS is the total sum-of-squares (from the total sample variance of Y ), ESS is the explained
sum-of-squares (from the sample variance of the OLS predicted values), and RSS is the residual
sum-of-squares (from the sample variance of the OLS residuals).
Returning to our original definition of R2: “the portion of variance in Y that can be explained by
the estimated model”, we get:

R2 = ESS

TSS
. (5.21)

To get an alternate equation, we solve 5.20 for ESS:

ESS = TSS − RSS

and substitute into R2:

R2 = ESS

TSS
= TSS − RSS

TSS
= 1 − RSS

TSS
(5.22)

2. This question is answered by considering two extreme cases: (i) the X variable has no explanatory
power, and (ii) the X variable can perfectly explain Y . (i) is a situation of “no fit”, drawn in
figure 5.3, and would occur if b1 = 0. In this situation, each OLS predicted value will be equal to
Ȳ , so ESS will equal 0, and so R2 will also equal 0. (ii) is a situation of “perfect fit”, drawn in
figure 5.4. All data points are on the estimated regression line. ESS = TSS, RSS = 0, and so
R2 = 1.
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3. Using equation 5.7, we just need to see that as n increases, the variance of the OLS estimator
decreases.

4. In order to perform hypothesis testing, an estimate for the variance of the OLS estimator is
required. If equation 5.7 is to be used in practice, we must replace the unknown σ2

ϵ with the
estimator s2

epsilon =
∑

e2
i/n − 2. When we take the square-root of this quantity, it is called the

standard error of b1 (or s.e.[b1] for short). That is,

s.e.[b1] =
√√√√ s2

ϵ∑
X2

i − (
∑

Xi)2

n

5. The interpretation of β1, when the independent variable is a dummy variable, is obtained by taking
the conditional expectation of Y for each of the two possible values that the dummy variable can
take. We repeat equation 5.16:

E [Yi|Di = 1] − E [Yi|Di = 0] = β1

6. a) The estimated wage-gender gap is the coefficient in front of the gender dummy variable
(where it is understood that gender = 1 if the worker is female). So, the estimated wage-
gender gap is -2.12, meaning that on average, women earn $2.12 less than men, according to
this sample data.

b) The sample mean wage for mean is b0 = 10.00, and for women is b0 +b1 = 10.00−2.12 = 7.78.
c) The null hypothesis is that the differences in wages between men and women is zero. In

terms of the population model, this would mean that β1 = 0.

H0 : β1 = 0
HA : β1 ̸= 0

The t-test statistic for this null hypothesis is:

t = b1 − β1,0
s.e. [b1] = −2.12 − 0

0.44 = −4.82

The associated p-value is 0.00. We reject the null hypothesis. The estimated wage-gender
gap is statistically significant.

d) The 90% confidence interval for the wage-gender gap is:

−2.12 ± 1.65 × 0.44 = (−2.85, −1.39)

e) Gender explains 4.2% of the variation in wages.
f) b0 = 7.78 and b1 = 2.12.

7. a) Use the following command:

summary(lm(wage ~ education))

and you should see the following output:

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.74598 1.04545 -0.714 0.476
education 0.75046 0.07873 9.532 <2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.754 on 532 degrees of freedom
Multiple R- squared : 0.1459 , Adjusted R- squared : 0.1443
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F- statistic : 90.85 on 1 and 532 DF , p-value: < 2.2e -16

Some of this information is summarized as follows:

ˆwage = − 0.75 + 0.75 × education, R2 = 0.146
(1.05) (0.08)

The estimated returns to education are $0.75 in hourly wages per year of education.
b) From the R output we can see that the education variable is highly statistically significant.

The p-value for the test is 0 (to sixteen decimal places).
c) The 95% confidence interval is:

0.75 ± 1.96 × 0.079 = (0.60, 0.91)

d) Years of education can explain 14.6% of the differences in wages.
e) Assuming that a high school graduate has 12 years of education, the predicted wage is:

ˆwage = −0.75 + 0.75(12) = 8.25

and assuming that university graduates have 16 years of education the predicted wage is:

ˆwage = −0.75 + 0.75(16) = 11.25

f) The predicted difference in wages between university and high school graduates is $11.25 -
$8.25 = $3.



Chapter 6

Multiple Regression

Multiple regression refers to having more than one “X” variable (more than one regressor). From now
on, we will typically be dealing with population models of the form:

Yi = β0 + β1X1i + β2X2i + · · · + βkXki + ϵi (6.1)

where k is the number of regressors in the model, and the total number of βs to be estimated is (k + 1).
This new model allows for Y to be explained used multiple variables. That is, there can now be many
Xs that are causal determinants of Y .

6.1 House prices
Should I build a fireplace in my home before I sell it? To motivate the need for a multiple regression
model, we begin with an example. Let’s try to determine the value of a fireplace using data on house
prices. The data are from the New York area, 2002-2003, and are from Richard De Veaux of Williams
College.

To load the data into R, use the following two commands:

house <- read.csv("https://rtgodwin.com/data/houseprice.csv")

The variables in the dataset are shown in Table 6.1.

Table 6.1: Description of the variables in the house price data set.
Price the price of the house in dollars

Lot.Size the size of the property in acres
Waterfront dummy variable equal to 1 if house is on the water

Age number of years since the house was built
Central.Air dummy variable equal to 1 if house has air conditioning
Living.Area the size of the house in square feet

Bedrooms number of bedrooms
Fireplaces number of fireplaces

Bathrooms number of bathrooms (half-bathrooms are 0.5)
Rooms total number of rooms in the house

We are interested in the effect of the variable Fireplaces on Price. Let’s get some summary
statistics for Fireplaces:

summary(house$Fireplaces)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.6019 1.0000 4.0000

The houses in the sample have anywhere from 0 to 4 fireplaces, with the average being 0.6.
Let’s now turn our attention to the Price variable. For easier interpretation, we’ll changethe units of
Price form dollars to thousands of dollars:

house$Price <- house$Price / 1000

Next, let’s see the sample mean price, conditional on the number of fireplaces:

mean(house$Price[house$Fireplaces == 0])

[1] 174.6533

mean(house$Price[house$Fireplaces == 1])

[1] 235.1629

mean(house$Price[house$Fireplaces == 2])

[1] 318.8214

mean(house$Price[house$Fireplaces == 3])

[1] 360.5

mean(house$Price[house$Fireplaces == 4])

[1] 700

We see that the average house price increases quite dramatically as the number of fireplaces increase. It’s
looking like I should build that fireplace! It should be no surprise that the two variables are correlated:

cor(house$Price, house$Fireplaces)

[1] 0.3767862

Now, let’s estimate the population model:

Price = β0 + β1Fireplaces + ϵ

where β0 would be the price of a house with 0 fireplaces, and β1 is the increase in house price for an
additional fireplace. The R code to estimate this model via OLS in R, and the resulting output, are as
follows:

summary(lm(Price ~ Fireplaces, data=house))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 171.824 3.234 53.13 <2e -16 ***
Fireplaces 66.699 3.947 16.90 <2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 91.21 on 1726 degrees of freedom
Multiple R- squared : 0.142 , Adjusted R- squared : 0.1415
F- statistic : 285.6 on 1 and 1726 DF , p-value: < 2.2e -16
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What is the estimated marginal effect of Fireplaces on Price? Take a minute to google the cost
of fireplace installation. As an economist, this should trouble you deeply. If the estimated value of an
additional fireplace is $66,700, and if it only costs $10,000 to install a fireplace, we should see lots of
houses with many fireplaces. Something is wrong here. To conclude this section, think about what the
main determinant of house price should be.

6.2 Omitted variable bias

Figure 6.1: An omitted X2 variable that is correlated with X1, and that also determines Y , will make
estimation of the true effect of X1 on Y impossible.

The above OLS estimator (b1 in the house prices example) is suffering from omitted variable bias.
Omitted variable bias (OVB) occurs when one or more of the variables in the random error term (ϵ)
are related to one or more of the X variables. Recall that ϵ contains all of the variables that determine
Y , but that are unobserved (or omitted). Also, recall that one of the assumptions required for OLS to
be a “good” estimator is A.5: ϵ and X are independent. If A.5 is not true, the OLS estimator can be
biased (giving the wrong answer on average).

Suppose that there are two variables that determine Y : X and Z. Also suppose that X and Z
are correlated (not independent). When X changes, Y changes. But when X changes, Z changes too
(because Z and X are related), and this change in Z also causes a change in Y . If Z is omitted so that
we only observe X and Y , then we cannot attribute changes in X directly to changes in Y . The changes
in Z will “channel” through X. The OLS estimator for the effect of X on Y will be biased, unless the
Z variable is included.

6.2.1 House prices revisited
What is the important omitted variable from the above house prices example? It seems like the estimated
effect of Fireplaces on Price is too large. In fact, it may be that the number of fireplaces is just
indicating the size of the house, which is really important for price!

Let’s add the Living.Area variable to our population model:

Price = β0 + β1Fireplaces + β2Living.Area + ϵ

The R command and associated output is:

summary(lm(Price ~ Fireplaces + Living.Area, data = house))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 14.730146 5.007563 2.942 0.00331 **
Fireplaces 8.962440 3.389656 2.644 0.00827 **
Living .Area 0.109313 0.003041 35.951 < 2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 68.98 on 1725 degrees of freedom
Multiple R- squared : 0.5095 , Adjusted R- squared : 0.5089
F- statistic : 895.9 on 2 and 1725 DF , p-value: < 2.2e -16
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Several results have changed with the addition of the Living.Area variable:

• The estimated value of an additional fireplace has dropped from $66,699 to $8,962.
• The R2 has increased from 0.142 to 0.5095.
• The estimated intercept has changed by a lot (but this is unimportant).
• There is a new estimated β: b2 = 0.11. This means that, it is estimated that an additional

square-foot of house size increases price by $110.

So, what is going on here? From the first regression, the results are:

ˆPrice =171.82 + 66.70 × Fireplaces, R2 = 0.142
(3.23) (3.95)

and from the second regression:

ˆPrice =14.73 + 8.96 × Fireplaces + 0.11 × Living.Area, R2 = 0.511
(5.01) (3.39) (0.003)

Why has the estimated effect of Fireplace on Price changed so much? Living.Area is an important
variable. Arguably, the most important factor in determining house price is the size of the house.
Houses that have more fireplaces tend to be larger. (There usually aren’t two fireplaces in one room,
for example). So, Fireplaces and Living.Area are correlated:

cor(house$Fireplaces, house$Living.Area)

[1] 0.4737878

When Living.Area is omitted from the regression, its effect on Price becomes mixed up in the effect
of Fireplaces on Price. That is, when the house has more fireplaces, that means it’s a larger house,
so there are two reasons for a higher price. Lots of fireplaces is just indicating the house is large!

This is an example of omitted variable bias (OVB). When Living.Area is omitted, the OLS estima-
tor is biased (in this case the effect of more fireplaces on house price is estimated to be way too large).
OVB provides an important motivation for the multiple regression model: even though we may only be
interested in estimating one marginal effect, we still should include other variables that are correlated
to X, otherwise our estimator is biased. OVB is solved by adding the extra variables to the equation,
thus controlling for their effect.

6.3 OLS in multiple regression
6.3.1 Derivation

The OLS estimators, b0, b1, . . . , bk, are derived similarly to how they were in chapter 4 (when we only
had one X variable). The formulas are obtained by choosing b0, b1, . . . , bk so that the sum of squared
residuals is minimized:

min
b0,b1,...,bk

n∑
i=1

e2
i

This involves taking (k + 1) derivatives, setting them all equal to zero, and solving the system of
equations. The formulas become too complicated to write, unless we use matrices (which we won’t do
here).
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Figure 6.2: An OLS estimated regression plane (two X variables). The plane is chosen so as to minimize
the sum of squared vertical distances indicated in the figure. The figure was drawn using the scatter3d
function from the rgl package.

Now that we have multiple X variables, many concepts that we have already discussed become much
more difficult to visualize. For example, the estimated model:

Ŷi = b0 + b1X1i + b2X2i + · · · + bkXki (6.2)

can not be interpreted as a line! A line (with an intercept and slope) can be drawn in two dimensional
space. The estimated model in equation 6.2 has k dimensions (and is a k-dimensional hyperplane).
However, if we have only two X variables:

Ŷi = b0 + b1X1i + b2X2i

then we can still represent the estimated model in 3-dimensional space (see figure 6.2).

6.3.2 Interpretation
Let’s look at a population model with two X variables:

Yi = β0 + β1X1i + β2X2i + ϵi (6.3)

• Y is still the dependent variable
• X1 and X2 are the independent variables (the regressors)
• i still denotes an observation number
• β0 is the population intercept
• β1 is the effect of X1 on Y , holding all else constant (X2)
• β2 is the effect of X2 on Y , holding all else constant (X1)
• ϵ is the regression error term (containing all the omitted factors that effect Y )
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Nothing substantial has changed. β1, for example, is the marginal effect of X1 on Y , while holding
X2 constant. In the fireplaces example, by inlcuding Living.Area in the regression we are able to find
the marginal effect of fireplaces while holding house size constant. When we add more variables to the
model, the interpretation of the βs remains the same.

6.4 OLS assumption A2: no perfect multicollinearity
In this section, we pay special attention to assumption A2, which has only now become relevant in the
context of the multiple regression model.

A2 There is no perfect multicollinearity between the X variables.
This assumptions means that no two X variables (or combinations of the variables) can have an exact
linear relationship. For example, exact linear relationship between Xs are:

• X1 = X2
• X1 = 100X2
• X1 = 1 + X2 − 3X3

In these examples, you can figure out what one of the Xs will be, if you know the other Xs. This
situation is usually called perfect multicollinearity. The data contains redundant information. This
shouldn’t be much of a problem, except that the OLS formula doesn’t allow all of the estimators to be
calculated (the problem is similar to trying to divide by zero).

Using R, let’s see what happens when we try to include an X variable that is a perfectly linear
relationship with another X variable. We’ll use the house price data again. The Living.Area variable
measures the size of the house in square feet. Suppose that there was another variable in the data set
that measured house size in square metres (1 square foot = 0.0929 square metre). We can create this
variable in R using:

house$House.Size <- house$0.0929 * Living.Area

and now let’s include it in our OLS estimation:

summary(lm(Price ~ Fireplaces + Living.Area + House.Size, data = house))

Coefficients : (1 not defined because of singularities )
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 14.730146 5.007563 2.942 0.00331 **
Fireplaces 8.962440 3.389656 2.644 0.00827 **
Living .Area 0.109313 0.003041 35.951 < 2e -16 ***
House.Size NA NA NA NA
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 68980 on 1725 degrees of freedom
Multiple R- squared : 0.5095 , Adjusted R- squared : 0.5089
F- statistic : 895.9 on 2 and 1725 DF , p-value: < 2.2e -16

Notice the error message “1 not defined because of singularities”, and the row of “NA”s (not available).
So, R recognized that there was a problem, and dropped the redundant variable, but not all econometric
software has been this clever.

Some common examples of where the assumption of “no perfect multicollinearity” is violated in
practice are when the same variable is measure in different units (such as square feet and square metres,
or dollars and cents), and in the dummy variable trap.
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6.4.1 The dummy variable trap
The dummy variable trap occurs when one too many dummy variables are included in the equation.
For example, suppose that we have a dummy variable female that equals 1 if the worker is female.
Suppose that we also have a variable male that equals 1 if the worker is male. There is an exact linear
combination between the two variables:

female = 1 − male

If you know the value for the variable male, then you automatically know the value for female. Including
both male and female in the equation would be a violation of assumption A2, and would be referred
to as the dummy variable trap for this example. That is, OLS would not be able to estimate all of the
βs in the equation:

wage = β0 + β1 × male + β2 × female + ϵ

The male and female dummy variables is a simple example, in other situations it is much eas-
ier to fall into the “trap”. For example, suppose that you are provided data on a worker’s location
by province or territory. That is, each worker has a Location variable that takes on one of the val-
ues: {AB, BC, MB, NB, NL, NS, NT, NU, ON, PE, QC, SK, Y T}. How should this variable be used?
Typically, a series of dummy variables would be created from the Location variable:

Alberta = 1 if Location = AB; 0 otherwise
British.Columbia = 1 if Location = BC; 0 otherwise

Manitoba = 1 if Location = MB; 0 otherwise
...

Y ukon = 1 if Location = Y T ; 0 otherwise

So, we could create 13 dummy variables from the Location variable, but if we included all of them
in the regression, we would fall into the dummy variable trap! Instead, one of the provinces/territories
must be left out of the equation. Whichever group is left out, it becomes the base group, to which
comparisons are made.

The solution to perfect multicollinearity, then, is to identify the redundant variable(s), and simply
drop it from the equation.

As a final note, it is not a violation of “no perfect multicollinearity” if we take a non-linear trans-
formation of a variable in the data set. For example, if we create a new variable X2 where X2 = X2

1 ,
this is ok! In fact, we will make use of non-linear transformations in chapter 8.

6.4.2 Imperfect multicollinearity
Imperfect multicollinearity is when two (or more) variables are almost perfectly related. That is, they
are very highly correlated. Suppose that the true population model is (remember, we don’t actually
know this in practice):

Y = 2X1 + 2X2 + ϵ

and that the correlation between X1 and X2 is 0.99. Regress Y on X1:

summary(lm(Y ~ X1))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -4.4165 3.8954 -1.134 0.263
X1 4.0762 0.4698 8.676 2.13e -11 ***
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The estimated standard error is small, so that the t-statistic is large, and we are sure that X1 is
statistically significant. However, the estimated β1 is twice as big as it should be. This is because of
omitted variable bias. So, we add X2 to the equation:

summary(lm(Y ~ X1 + X2))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -4.676 3.956 -1.182 0.243
X1 1.958 4.075 0.481 0.633
X2 2.128 4.066 0.523 0.603

Now, the estimated βs are closer to their true value of 2, but both appear to be statistically insignificant!
(Note the large standard errors and small t-statistics.)

The problem here is that, because X1 and X2 are highly correlated, it is difficult to attribute changes
in one of the X variables to changes in Y , because both X1 and X2 are almost always changing together
in a similar fashion. That is, the ceteris paribus assumption (all else equal), is not feasible when the
variables are highly correlated. β1 is the effect of X1 on Y , holding X2 constant. But, because of the
correlation, the data can not provide us such a ceteris paribus environment.

The problem of imperfect multicollinearity shows up in the large standard errors for the estimated
βs of the affected variables. Adding and dropping the affected variables may result in large swings in
the estimated coefficients. Imperfect multicollinearity makes us unsure of our estimated results. The
problem is difficult to address. We cannot drop one of the correlated variables, due to the problem
of omitted variable bias. In fact, there is very little to be done here. We need more information, but
presumably the sample size n cannot be increased. As long as the variables we are interested in studying
are not part of the multicollinearity problem (and the ones that are part of the problem are there to
avoid OVB), then multicollinearity is not an issue.

6.5 Adjusted R-squared
We should no longer use R2 in the multiple regression model. This is because when we add a new
variable to the model, R2 must always increase (or at best stay the same). This means that we could
keep adding “junk” variables to the model to arbitrarily inflate the R2. This is not a good property for
a “measure of fit” to have. Instead, we will use “adjusted R-squared”, denoted by R̄2.

6.5.1 Why R2 must increase when a variable is added
To see why R2 must always increase when a variable is added, we begin by looking again at the formula:

R2 = ESS

TSS
= 1 − RSS

TSS
= 1 −

∑
e2

i

TSS

and again at the minimization problem that defines the OLS estimators:

min
b0,b1,...,bk

n∑
i=1

e2
i

When we add another X variable, the minimized value of
∑n

i=1 e2
i must get smaller! OLS picks the

values for the bs so that the sum of squared vertical distances are minimized. If we give OLS another
option for minimizing those distances, the distances have to get smaller (or at the worst stay the same).
So, adding a variable means RSS decreases, so R2 increases. The only way that R2 stays the same is
if OLS chooses a value of 0 for the associated slope coefficient, which never happens in practice.
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As an example, let’s try adding a nonsense variable to the house price model: random dice rolls.
Using R, 1728 die rolls are simulated (to match the house price sample size of n = 1728), are recorded
as a variable Dice, and added to the regression. Notice the difference in “Multiple R-squared” (R2) and
“Adjusted R-squared” (R̄2) between the two regressions:

summary(lm(Price ~ Fireplaces + Living.Area, data = house))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 14.730146 5.007563 2.942 0.00331 **
Fireplaces 8.962440 3.389656 2.644 0.00827 **
Living .Area 0.109313 0.003041 35.951 < 2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 68.98 on 1725 degrees of freedom
Multiple R- squared : 0.5095 , Adjusted R- squared : 0.5089
F- statistic : 895.9 on 2 and 1725 DF , p-value: < 2.2e -16

summary(lm(Price ~ Fireplaces + Living.Area + Dice, data = house))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 12.105383 6.072084 1.994 0.04635 *
Fireplaces 8.829436 3.394526 2.601 0.00937 **
Living .Area 0.109378 0.003042 35.954 < 2e -16 ***
Dice 0.743506 0.972575 0.764 0.44469
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 68.99 on 1724 degrees of freedom
Multiple R- squared : 0.5097 , Adjusted R- squared : 0.5088
F- statistic : 597.3 on 3 and 1724 DF , p-value: < 2.2e -16

The variable Dice has no business being in the regression of house prices, and we fail to reject the
null hypothesis that its effect is zero, yet the R2 increases. The adjusted R-squared (R̄2) decreases,
however.

6.5.2 The R̄2 formula
Adjusted R-squared (R̄2) is a measure-of-fit that can either increase or decrease when a new variable is
added. R̄2 is a slight alteration of the R2 formula. It introduces a penalty into R2 that depends on the
number of X variables in the model. (Remember that the number of Xs in the model is denoted by k.)

R̄2 = 1 − RSS / (n − k − 1)
TSS / (n − 1) (6.4)

The R̄2 formula is such that when a variable is added to the model, k goes up, which tends to
make R̄2 smaller. We know from the previous discussion, however, that whenever a variable is added,
RSS must decrease. So, whether or not R̄2 increases or decreases depends on whether the new variable
improves the fit of the model enough to beat the penalty incurred by k.

The justification for the (n − k − 1) and (n − 1) terms is from a degrees-of-freedom correction. How
many things do we have to estimate before we can calculate RSS? k + 1 βs must first be estimated
before we can get the OLS residuals, and RSS. If you want to use RSS for something else (such as
a measure of fit), we recognize that we don’t have n pieces of information left in the sample, we have
(n − k − 1). A similar argument can be made for the (n − 1) term in equation 6.4.
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6.6 Review Questions
1. Explain why the estimated value for β1 changes so much between the equations:

Price = β0 + β1Fireplaces + ϵ

and

Price = β0 + β1Fireplaces + β2Living.Area + ϵ

2. What are the two conditions that will make an omitted variable cause OLS to be biased?
3. Explain how the OLS estimators, b0, b1, . . . , bk, are derived in the multiple regression model.

(Explain how the equations for b0, b1, . . . , bk are obtained.)
4. For the model:

Y = β0 + β1X1 + β2X2 + ϵ,

explain the interpretation of β1 and β2.
5. Why is perfect multicollinearity a problem for OLS estimation?
6. Explain how the “dummy variable trap” is a situation of perfect multicollinearity.
7. Explain what imperfect multicollinearity is, and how it poses a problem for OLS estimation.
8. Why does R2 always increase when a variable is added to the model?
9. Explain where the (n − k − 1) and (n − 1) terms in R̄2 come from.

10. An estimated model with two X variables, and from a sample size of n = 27, yields R2 = 0.5882.
Calculate R̄2.

11. This question again uses the CPS data set, which can be loaded into R using the following
commands:

cps <- read.csv("htpps://rtgodwin.com/data/cps1985.csv")

a) Regress wage on education, age, and gender, and report your results.
b) Why has the estimated returns to education changed from the exercise in chapter 5?
c) Are the variables statistically significant?
d) Test the hypothesis that there is no wage-gender gap.
e) What is the predicted wage for a 40 year-old female worker with 12 years of education?
f) What is the predicted wage for a 40 year-old male worker with 12 years of education? What

is the difference from the previous question?
g) Why are the R2 and R̄2 so similar for this regression?
h) Interpret the value of R̄2.
i) Try adding the variable experience to the regression. Are all the variables still statistically

significant? What is going on here?

6.7 Answers
1. The estimated value changes so much due to omitted variable bias. Living.Area is an important

determination of house price, and is correlated with Fireplaces (larger houses have more fire-
places). The effect of house size is “channeling” through the number of fireplaces. The omission of
Living.Area is causing the OLS estimator in the first equation to be biased (and inconsistent).

2. If the omitted variable is (i) a determinant of the dependent (Y ) variable; and (ii) is correlated
with one or more of the included (X) variables.

3. The OLS estimators in the multiple regression model are derived similarly to how they were in
chapter 4. b0, b1, . . . , bk are chosen so as to minimize the sum of squared residuals. Solving for
b0, b1, . . . , bk involves solving a calculus minimization problem.
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4. β1 is the marginal effect of X1 on Y , holding X2 constant. Similar for β2. To prove this, we can
take the partial derivative of Y with respect to (say) X1:

∂Y

∂X1
= 0 + β1 + 0 + 0 = β1

This tells us that the change in Y resulting from a change in X1, is β1, and that these changes
are independent from changes in X2.

5. Perfect multicollinearity is a problem because the OLS estimator is not defined. That is, our
computer software will be unable to calculate all of the OLS estimators.

6. The “dummy variable trap” is when a redundant dummy variable is included in the regression.
This is a case of perfect multicollinearity: there is an exact linear relationship between the dummy
variables. For example, suppose that I had a two dummy variables:

attended =
{

1, if the student attended class
0, if the student did not attend class

and

skipped =
{

1, if the student skipped class
0, if the student did not skip class

Including both of these variables in the equation would result in perfect multicollinearity because
there is an exact linear relationship between the two variables:

attended = 1 − skipped

7. Imperfect multicollinearity is when two (or more) variables are highly correlated. In this situation,
OLS can be imprecise (have high variance) because it is difficult to tell which of the two correlated
variables is causing the change in Y . The problem of imperfect multicollinearity shows up in large
standard errors and confidence intervals, and large swings in the estimated βs as the affected
variables are added to and dropped from the model.

8. The bs in OLS are chosen so as to minimize the sum of squared residuals. When a variable is added
to the model, a b is added to the minimization problem, giving one more way to minimize RSS.
So, RSS must decrease (or possibly stay the same) when another b is added. By the formula for
R2, it can easily be seen that R2 must increase.

9. The justification for the (n − k − 1) and (n − 1) terms are due to degrees-of-freedom. The amount
of information in the RSS statistic is (n−k −1) since k +1 βs must first be estimated by OLS. In
the TSS statistic, one thing must be estimated first (Ȳ ), so the amount of information left over
is (n − 1).

10.

R2 = 1 − RSS

TSS
= 0.5882

RSS

TSS
= 1 − R2 = 1 − 0.5882 = 0.4118

R̄2 = 1 − RSS / (n − k − 1)
TSS / (n − 1)

= 1 − 0.4118 (n − 1)
(n − k − 1)

= 1 − 0.4118
(26

24

)
= 0.5539
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11. a) summary(lm(wage ~ education + age + gender, data = cps1985))

Table 6.2: Regression results using the CPS data.
Dependent variable: wage
Regressor Estimate

(standard error)
education 0.827***

(0.075)
age 0.113***

(0.017)
female -2.335***

(0.388)
intercept -4.843***

(1.244)
n = 534
R̄2 = 0.249
*** denotes significance at the 0.1% level

b) The estimated returns to education have changed from 0.751 to 0.827. The formula for each
OLS estimator (b) depends on all of the variables in the regression. So, when the X variables
change the estimated results will change (unless the sample correlation between the variables
is exactly 0, which is never the case in practice). The fact that the results change may
indicate that the regression from chapter 5 was suffering from omitted variable bias.

c) Yes (see the p-values in R).
d) This hypothesis has already been tested for us. We reject at the 0.1% significance level.
e)

ˆwage = −4.843 + 0.827(12) + 0.113(40) − 2.335(1) = 7.266

f)

ˆwage = −4.843 + 0.827(12) + 0.113(40) − 2.335(0) = 9.601

The difference between the two predicted values (9.601 − 7.266 = 2.335) is equal to the
estimated gender-wage gap.

g) R2 and R̄2 differ by the term:

(n − 1)
(n − k − 1

As n grows, the difference between R2 and R̄2 disappears. In the CPS data, the sample size
is reasonably large at n = 534, and k is only equal to 3, making the two measures-of-fit quite
similar.

h) 24.9% of the variation in wages can be explained using the three variables in the model.
i) When we add experience to the model:

summary(lm(wage ~ education + age + gender
+ experience))

all variables except the female dummy variable lose statistical significance. This is due to
imperfect multicollinearity. Age, education, and experience, are all closely related.



Chapter 7

Joint Hypothesis Tests

Now that we have multiple X variables and βs in our population model, we might want to test hypotheses
that involves two or more of the βs at once. In these cases, we (typically) do not use t-tests. Instead,
we will use the F -test.

7.1 Joint hypotheses
The types of hypotheses we are now considering involve multiple coefficients (βs). For example:

H0 : β1 = 0, β2 = 0
HA : β1 ̸= 0 and/or β2 ̸= 0

(7.1)

and

H0 : β1 = 1, β2 = 2, β4 = 5
HA : β1 ̸= 1 and/or β2 ̸= 2 and/or β4 ̸= 5

(7.2)

Note that the null hypothesis is wrong if any of the individual hypotheses about the βs are wrong. In
the latter example, if β2 ̸= 2, then the whole thing is wrong. Hence the use of the “and/or” operator in
HA. It is common to omit all the “and/or” and simply write “not H0” for the alternative hypothesis.

A joint hypothesis specifies a value (imposes a restriction) for two or more coefficients. Use q to
denote the number of restrictions (q = 2 for hypothesis 7.1, and q = 3 for hypothesis 7.2).

7.1.1 Model selection
If we fail to reject hypothesis 7.1, this implies that we should drop X1 and X2 from the model. That
is, if variables are insignificant, we might want to exclude them from the model. If we wish to drop
multiple variables from the model at once, that means we are hypothesizing that all of the associated
βs are jointly equal to zero.

Why would we want to drop (or omit) variables from the model? There are two main reasons:

• A simpler model is always better. The same reasons that we wish to have simple models in
economics also apply to econometrics. Simple models are easier to understand, easier to work
with. They focus on the things we are trying to explain.

• The fewer βs that we try to estimate, the more information is available for each. That is, the
variance of the remaining OLS estimators will be smaller after we drop X variables.

We have to be careful when we drop variables, however! The cost of wrongly dropping a variable
is high. We can end up with omitted variable bias. So, we should be careful and err on the side of
caution, since it is generally held that the cost of wrongly omitting a variable (omitted variable bias) is
higher than the cost of wrongly including a variable (a loss of efficiency).
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7.2 Example: CPS data
Load the CPS data:

install.packages("AER")
library(AER)
data("CPS1985")
attach(CPS1985)

Regress wage on education, gender, age, and experience:

summary(lm(wage ~ education + gender + age + experience))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -1.9574 6.8350 -0.286 0.775
education 1.3073 1.1201 1.167 0.244
genderfemale -2.3442 0.3889 -6.028 3.12e -09 ***
age -0.3675 1.1195 -0.328 0.743
experience 0.4811 1.1205 0.429 0.668
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.458 on 529 degrees of freedom
Multiple R- squared : 0.2533 , Adjusted R- squared : 0.2477
F- statistic : 44.86 on 4 and 529 DF , p-value: < 2.2e -16

In the above regression, both age and experience appear to be statistically insignificant (the p-values
in the table are 0.743 and 0.668, respectively). That is, the null hypothesis H0 : β3 = 0 cannot be
rejected, and neither can the null hypothesis H0 : β4 = 0. This suggests that age and experience could
be dropped from the model. However, to drop both of these variables we actually need to test the joint
hypothesis:

H0 : β3 = 0, β4 = 0
HA : β3 ̸= 0 and/or β4 ̸= 0

t-tests won’t work for this hypothesis. Instead we will use the F -test.

7.3 The failure of the t-test in joint hypotheses
A natural idea for testing H0 : β3 = 0, β4 = 0 (for example), is to reject H0 if either |t3| > 1.96 and/or
|t4| > 1.96. There are two problems with this. First, the type I error will not be 5%, unless we increase
the critical value (showing this is left as an exercise). A much bigger problem is that t3 and t4 are likely
not independent (they are correlated).

For example, in the population model:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ϵ, (7.3)

if X3 and X4 are correlated, then the OLS estimators b3 and b4 will also be correlated with each other
(recall OVB and how adding a variable to the model changes all the estimates - the formula for each b
depends on all the X variables). If b3 and b4 are correlated then t3 and t4 are correlated!

In population model 7.3, suppose that X3 and X4 are positively correlated. Consider the null
H0 : β3 = 0, β4 = 0. Given the sign of the correlation between X3 and X4 (positive), it is more likely
that b3 and b4 have the same sign (both positive or both negative). It is less likely that one of the
coefficients would be estimated to be negative, and the other positive. Seeing opposite signs in the
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estimated coefficients would be additional evidence against the null hypothesis that is not taken into
account by looking at the individual t-statistics.

We need a test that will take into account the correlations between all the variables that are involved
in the test. Such a test is the F -test.

7.4 The F-test
The F -test takes into account the correlations between the OLS estimators. Suppose the null hypothesis
is still H0 : β3 = 0, β4 = 0. Since we are testing exactly two βs, the F -statistic formula can be written
as:

F = 1
2

t2
3 + t2

4 − 2rt3,t4t3t4
1 − r2

t3,t4

where rt3,t4 is the estimated correlation between t3 and t4. The larger the F -statistic, the more likely
we are to reject the null. The purpose of showing this formula here is to highlight that the F -test takes
into account the correlation between t3 and t4. The formula becomes much too complicated when we
are testing more than two βs.

To obtain a more convenient formula for the F -test statistic, we need the idea of a restricted and
unrestricted model. The restricted model is obtained by incorporating the values chosen for the βs in
the null hypothesis into the population model. That is, the null hypothesis chooses certain values for
some of the βs, and when those values are substituted into the full population model, we get a restricted
model. In the alternative hypothesis, the population model is fully unrestricted. That is, none of the
βs are chosen beforehand, and all values can be chosen by OLS. To summarize:

• restricted model - the model under the null hypothesis. Some βs are chosen in the null, and
substituted into the population model.

• unrestricted model - the model under the alternative hypothesis. All βs are free to be chosen by
the estimation procedure (OLS).

The F -test can be implemented by estimating these two models, and using some summary statistics
from the regression. The intuition is that, if the restrictions are true (if H0 is true), then the “fit” of
the two models should be similar. Alternatively, if the restrictions are false (the null is false), then the
unrestricted model should “fit” much better than the restricted model. We can measure the fit of the
two models using the residual sum-of-squares, or the R2.

One version of the F -statistic formula is:

F = (RSSr − RSSu)/q

RSSu/(n − ku − 1) (7.4)

where:

• RSSr is the residual sum-of-squares from the restricted model
• RSSu is the residual sum-of-squares from the unrestricted model
• q is the number of restrictions being tested
• ku is the number of X variables in the unrestricted model, or the number of βs (not counting the

intercept)

Recall that the unrestricted model must fit better than the restricted model (OLS has more options
for minimizing RSS). Also, note that the F -statistic must be a positive number, since RSS is a
sum-of-squares.

If the restrictions are true, then OLS should (approximately) choose values for the βs that are
already in the null hypothesis. The restricted and unrestricted models will be similar, (RSSr − RSSu)



7.5 Confidence sets 82

will be small (close to zero), the F -statistic will be close to zero, and we will tend to fail to reject the
null. Alternatively, if the null is false, (RSSr − RSSu) will be large, leading to a large F -statistic, and
a tendency to reject.

Another (possibly more convenient and intuitive) formulation of the F -statistic involves the R2 (not
the adjusted R2). We can solve R2 for RSS using the formula:

R2 = 1 − RSS

TSS

and re-write the F -statistics formula in equation 7.4 as:

F = (R2
u − R2

r)/q

(1 − R2
u)/(n − ku − 1) (7.5)

where:

• R2
r is the (unadjusted) R2 from the restricted model

• R2
u is the (unadjusted) R2 from the unrestricted model

• q and ku are as before

Table 7.1: χ2 critical values for the F -test statistic.
q 5% critical value
1 3.84
2 5.99
3 7.82
4 9.49
5 11.07

Remember that whenever we add a β to the model that R2 has to increase. This was the whole
reason that we needed to use adjusted R-square (R̄2) instead. However, if the fit of the model doesn’t
change much when the restrictions are imposed, the R2 will be similar between the two models, leading
to a small F -statistic, and a tendency to fail to reject H0. Alternatively, if imposing the restrictions
makes a big difference in terms of the fit of the model, the F -statistic will be large and we will tend to
reject H0.

The F -test statistic that we have been discussing follows an F distribution with q and (n − ku − 1)
degrees of freedom. If the sample size n is large, however, the F -statistic follows a χ2 (chi-square)
distribution with q degrees of freedom (similar to how the t-statistic follows a Normal distribution for
large n). In this book we assume that n is large enough for this to be true. The F -statistic critical
values for 5% significance, and for large n, are given in table 7.1. If the F -statistic exceeds the 5%
critical value, the null hypothesis should be rejected at 5% significance.

7.5 Confidence sets
Confidence intervals may be used to test hypotheses that involve only one β. If the value chosen for
β by the null hypothesis is within the confidence interval, we will fail to reject. In fact, one of the
definitions for a confidence interval is that it is the interval that contains all values that can be chosen
for a null hypothesis, that won’t be rejected.

If our null hypothesis involves two βs, as in H0 : β1 = 0, β2 = 0 for example, then the idea of a
confidence interval would be extended to a confidence set. The confidence set would contain all the pairs
of values for β1 and β2 that could be jointly chosen under the null hypothesis, where the null hypothesis
would not be rejected.
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Figure 7.1: Individual confidence intervals, and the confidence set.
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7.5.1 Example: confidence intervals and a confidence set
Consider the model:

Y = β0 + β1X1 + β2X2 + β3X3 + ϵ

which has been estimated by OLS:

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.6246 0.4660 -1.340 0.182
X1 0.2161 0.1723 1.255 0.211
X2 -0.1092 0.1153 -0.946 0.345
X3 2.9384 0.1092 26.914 <2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The 95% confidence interval around b1 is 0.2161±1.96×0.1723 = [−0.12, 0.55]. The null hypothesis
of H0 : β1 = 0 cannot be rejected at the 5% significance level since the value 0 is contained in the interval.
By looking at the R output, we can tell that the 95% confidence interval contains 0 given that the p-value
of 0.211 is greater than 0.05. Similarly, the confidence interval around b2 is −0.1092 ± 1.96 × 0.1153 =
[−0.34, 0.12], and contains 0. Both X1 and X2 appear to be statistically insignificant, according to
their individual confidence intervals.

Similar to why individual t-tests should not be used to test a joint hypothesis, neither should
individual confidence intervals be used. In order to test the hypothesis:

H0 : β1 = 0, β2 = 0
HA : not H0

using a predetermined set of values, we should use a confidence set containing all the pairs of β1 and
β2 that won’t be rejected. For this example, it turns out that the null hypothesis is not within the 95%
confidence set, so that we reject the null hypothesis that both variables are statistically insignificant.
We should not drop them from the model. This is a bit surprising considering the individual confidence
intervals. The individual confidence intervals, and the confidence set for b1 and b2, are shown in figure
7.1.
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The confidence set in figure 7.1 is a rotated ellipse. The angle of rotation is determined by the
correlation between X1 and X2. Calculating the confidence intervals is easy, calculating the confidence
set is not. Confidence sets are not typically used in practice in econometrics. The purpose of discussing
them in this section was to reinforce the idea that the correlation between the variables must be
considered when performing a joint hypothesis test.

7.6 Calculating the F-test statistic
To implement an F -test, we can estimate the restricted and unrestricted model, and compare the two.
Using the previous data, we will test the hypothesis:

H0 : β1 = 0, β2 = 0
HA : not H0

The full unrestricted model (under the alternative hypothesis) is:

Y = β0 + β1X1 + β2X2 + β3X3 + ϵ

The restricted model (under the null hypothesis) is:

Y = β0 + β3X3 + ϵ

In R, we start by estimating these two models, and saving them:

unrestricted <- lm(Y ~ X1 + X2 + X3)
restricted <- lm(Y ~ X3)

Then, we can use the anova command to perform the F -test directly:

anova(restricted, unrestricted)

Analysis of Variance Table

Model 1: Y ~ X3
Model 2: Y ~ X1 + X2 + X3

Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 8805.1
2 196 8472.7 2 332.37 3.8444 0.02303 *
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The F -statistic is 3.84, which is larger than the 5% critical value of 3.00 (see table 7.1). The p-value is
0.02303. We reject the null hypothesis at the 5% significance level.

To calculate the F -statistic using equation 7.5:

F = (R2
u − R2

r)/q

(1 − R2
u)/(n − ku − 1)

we need the R2 from the two models. From the unrestricted model, the R2 is 0.7921:

summary(unrestricted)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.6246 0.4660 -1.340 0.182
X1 0.2161 0.1723 1.255 0.211
X2 -0.1092 0.1153 -0.946 0.345
X3 2.9384 0.1092 26.914 <2e -16 ***
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---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.575 on 196 degrees of freedom
Multiple R- squared : 0.7921 , Adjusted R- squared : 0.7889
F- statistic : 248.9 on 3 and 196 DF , p-value: < 2.2e -16

and from the restricted model the R2 is 0.784:

summary(restricted)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.5924 0.4719 -1.255 0.211
X3 2.9604 0.1104 26.804 <2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.669 on 198 degrees of freedom
Multiple R- squared : 0.784 , Adjusted R- squared : 0.7829
F- statistic : 718.5 on 1 and 198 DF , p-value: < 2.2e -16

We are testing two restrictions (q = 2), and n = 200, so that the F -statistic is:

F = (R2
u − R2

r)/q

(1 − R2
u)/(n − ku − 1) = (0.7921 − 0.784)/2

(1 − 0.7921)/(200 − 3 − 1) = 3.82

The number that we get by calculating the F -statistic using R2 is a little different than from the anova
command due to rounding.

7.7 The overall F-test
Regression software almost always reports the results of an “overall” F -test, whenever a model is
estimated. The null and alternative hypotheses for this overall F -test is:

H0 : β1 = β2 = · · · = βk = 0
HA : at least one β ̸= 0

(7.6)

Again, k denotes the number of X variables in the model. This null hypothesis says that none of the X
variable can explain the Y variable. It is a test to see if the estimated model is garbage. The intercept
(β0) is not included in the null hypothesis, otherwise there would be nothing to estimate, and if β0 = 0
then the mean of Y is also zero (a somewhat silly hypothesis in most cases). The overall F -test statistic
is reported in the bottom line of R ouptut. In the previous two examples the overall F -test statistic is
248.9 and 718.5, with associated p-values of 0 (to 16 decimal places). There is evidence that at least
one X variable explains Y .

We also take this opportunity to point out that, when q = 1, the t-test and F -test provide identical
results. In fact, when q = 1, F = t2. This can be verified from the previous R output. The t-statistic
on X3 is 26.804, and 26.8042 = 718.5 (the overall F -statistic).

7.8 R output for OLS regression
We can now understand all of the R output from OLS estimation, except for “residual standard error”.
This is just the sample standard deviation of the OLS residuals. It is also used as a measure of fit, and
is also sometimes called the root mean-squared-error. The residual standard error is:√ ∑

e2
i

n − k − 1
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We have not discussed this elsewhere in the book, but mention it here as a matter of finality. We
now know what everything is in the standard R output for OLS estimation.

7.9 Review Questions
1. Explain what is meant by a joint hypothesis, and provide an example.
2. Explain what the restricted and unrestricted models are in a joint hypothesis test.
3. Explain why t-tests can’t be used to test a joint hypothesis.
4. Calculate the type I error (which is also the significance) when testing:

H0 : β3 = 0, β4 = 0
HA : not H0

using two individual t-tests with critical value 1.96, and assuming that the t-statistics are inde-
pendent.

5. Use the CPS data. Let the full unrestricted population model be:

wage = β0 + β1education + β2gender + β3age + β4experience + ϵ

a) Use t-tests to test the null hypothesis: H0 : β3 = 0, β4 = 0.
b) Use the anova command to test the null hypothesis from part (a).
c) Use the R2 from the unrestricted and restricted models to calculate the F -statistic for the

null hypothesis in part (a). Use table 7.1 to decide whether to reject or fail to reject.
d) Roughly sketch the confidence set for b3 and b4.
e) Test the null hypothesis: H0 : β1 = 0, β2 = 0, β3 = 0, β4 = 0.
f) Using this data, and a null hypothesis of your choosing, verify that t2 = F .

7.10 Answers
1. A joint hypothesis is a null hypothesis that involves two or more parameters (βs). That is, the

null hypothesis is jointly specifying the values of two or more βs. See equations 7.1 and 7.2 for
examples.

2. One way of conducting a joint hypothesis test is to estimate two separate models. The popula-
tion model can be considered as the unrestricted model under the alternative hypothesis. It is
unrestricted since none of the values are chosen (by H0), and all βs are free to be estimated. The
null hypothesis, H0, however, is choosing (restricting) some of the values of the βs. When the
restrictions under H0 are incorporated into the population model, we get a restricted model.

3. t-tests are typically not used to test joint hypotheses for two reasons. (i) The usual critical values
(such as 1.96 for 5% significance) would have to be adjusted. (ii) The estimators that are used
in the hypothesis test (the OLS estimators b) are likely not-independent (e.g. correlated). This
means that the individual t-statistics are also likely to be correlated. Unless this correlation is
taken into account,

4. We will calculate the type I error assuming that the t-statistics are independent. Using two
individual t-tests, the null hypothesis would be rejected if either, or both, of the t-statistics
exceed 1.96 in absolute value. There are four possible outcomes: (i) both t-statistics are less
than 1.96 (in absolute value), (ii) both are greater than 1.96, (iii) |t3| > 1.96 and |t4| ≤ 1.96, (iv)
|t3| ≤ 1.96 and |t4| > 1.96. Only in (i) do we fail to reject the null. The probability of (i) occurring
is 0.95 × 0.95 = 0.9025. So the probability of rejecting H0 when it is true (the type I error) is the
probability of (ii), (iii) and (iv), which is 1 minus the probability of (i), or 0.0975 (not 0.05). We
could get the “right” type I error by increasing the critical value from 1.96. This, however, does
not solve the larger problem of the dependence between the t-statistics.

5. Load the CPS data:
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cps <- read.csv("http://rtgodwin.com/data/cps1985.csv")

a) First we need to estimate the model. Regress wage on education, gender, age, and
experience (put the R code all on one line):

summary(lm(wage ~ education + gender + age + experience, data=cps))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -1.9574 6.8350 -0.286 0.775
education 1.3073 1.1201 1.167 0.244
genderfemale -2.3442 0.3889 -6.028 3.12e -09 ***
age -0.3675 1.1195 -0.328 0.743
experience 0.4811 1.1205 0.429 0.668
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.458 on 529 degrees of freedom
Multiple R- squared : 0.2533 , Adjusted R- squared : 0.2477
F- statistic : 44.86 on 4 and 529 DF , p-value: < 2.2e -16

From the R output, we see that the individual t-statistics on age and experience are small
(-0.328 and 0.429, with p-values 0.743 and 0.668). This indicates that we should fail to reject
the null hypothesis.

b) We need to estimate a restricted model (under the null hypothesis):

restricted <- lm(wage ~ education + gender, data=cps)

and an unrestricted model (under the alternative hypothesis):

unrestricted <- lm(wage ~ education + gender
+ age + experience)

and use the anova command to get the relevant F -statistic:

anova(restricted, unrestricted)

Analysis of Variance Table

Model 1: wage ~ education + gender
Model 2: wage ~ education + gender + age + experience

Res.Df RSS Df Sum of Sq F Pr(>F)
1 531 11425
2 529 10511 2 914.27 23.007 2.625e -10 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The F -statistic is 23.007 with a p-value of 0.000. We reject the null hypothesis. This is the
opposite result of what the t-statistics would indicate.

c) We can find the R2 from the restricted model using the command:

summary(restricted)

Coefficients :
Estimate Std. Error t value Pr(>|t|)
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( Intercept ) 0.21783 1.03632 0.210 0.834
education 0.75128 0.07682 9.779 < 2e -16 ***
genderfemale -2.12406 0.40283 -5.273 1.96e -07 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.639 on 531 degrees of freedom
Multiple R- squared : 0.1884 , Adjusted R- squared : 0.1853
F- statistic : 61.62 on 2 and 531 DF , p-value: < 2.2e -16

So, R2
r = 0.1884. The R2 from the unrestricted model is R2

u = 0.2533 (see the R output in
part (a)). We are testing two restrictions, so that q = 2. The sample size is n = 534. The
number of X variables in the unrestricted model is 4, so that ku = 4. We can now calculate
the F -statistic using equation 7.5:

F = (R2
u − R2

r)/q

(1 − R2
u)/(n − ku − 1) = (0.2533 − 0.1884)/q

(1 − 0.2533)/(534 − 4 − 1) = 22.989

This is very close to the F -statistic that was obtained using the anova command in part (b).
Using table 7.1, we see that the relevant 5% critical value is 3.00. Since 22.989 > 3.00, we
reject the null hypothesis at the 5% significance level.

d) The main feature of the confidence ellipse is that it should be rotated about the origin. See
figure 7.1 for an example. The rotation of the ellipse reflects the non-independence of the
estimators, b3 and b4.

e) The null hypothesis in this question is referring to the “overall F -test”. This F -test statistic
is calculated for us when we use the summary command. From the output in part (a), this
F -statistic is 44.86 with p-value 0.000. We reject the null hypothesis.

f) The F -test and t-test are equivalent when q = 1. Specifically, t2 = F . Note that the 5%
critical value for q = 1 in the F -test (3.84) is the square of the 5% critical value in the t-test
(1.96).
To verify the equivalence of the F -test and t-test, we’ll calculate the F -statistic for a null
hypothesis where q = 1, and make sure that it is the square of the corresponding t-statistic.
Note that, in the R output in part (a), the t-statistic on education is 1.167. So, for the test:

H0 : β1 = 0
HA : β1 ̸= 0

The F -statistic should be F = 1.1672 = 1.362. Estimate the restricted model under this null
hypothesis, and use the anova command:

restricted2 <- lm(wage ~ gender + age + experience)
anova(restricted2, unrestricted)

Analysis of Variance Table

Model 1: wage ~ gender + age + experience
Model 2: wage ~ education + gender + age + experience

Res.Df RSS Df Sum of Sq F Pr(>F)
1 530 10538
2 529 10511 1 27.063 1.362 0.2437



Chapter 8

Non-Linear Effects

Many models in economics involve non-linear effects. A non-linear effect just means that the effect of
one variable on another is not constant. For example, diminishing marginal utility says that as more is
consumed, eventually there is less of an increase to utility than previous. The effect of quantity consumed
on utility is not constant (there is a non-linear relationship between quantity and utility). Increasing and
decreasing returns to scale is another example of a non-linear effect that you may have encountered in
your first-year economics courses. Increasing returns to scale implies that when the inputs of production
are doubled, output would more than double. The prevalence of the terms “marginal” and “increasing”
or “decreasing” in many of our economic models would suggest a need to handle non-linearity.

8.1 The linear model
The models we have seen so far have been linear. In the population model:

Y = β0 + β1X1 + · · · + βk + ϵ

the change in Y due to a change in X1 (for example) is: ∆Y/∆X1 = β1. This effect of X1 on Y is
constant. For many relationships between variables, this is unreasonable.

As an example of how the linear model does not work, we use the Diamond data from the Ecdat
R package (data originally from Chu, 2001). A plot of the price and carats of diamonds are shown in
figure 8.1, with the OLS estimated line included in the plot. The relationship between price and carats
appears to be non-linear. The effect of carat on price appears to be small when then diamond is small,
and gets large as the size of the diamond grows. The reason for this might be that large diamonds are
more rare. A larger diamond can always be cut into smaller diamonds, but two diamonds cannot be
combined to make a larger one. The linear model says that the effect of carat on price is constant, no
matter how large or small the diamond is to begin with.

Ideally, we would like an estimated model that is capable of capturing the half “U” shape that
we see in the diamonds plot, and other such non-linear shapes. If the true relationship between the
two variables is non-linear, then the linear model is misspecified. OLS is biased and inconsistent. For
situations like this, we need to specify a population model that allows for the marginal effect of X on
Y to change depending on the value of X.

8.2 Polynomial regression model
A non-linear relationship between two variables can be approximated using a polynomial function.
The validity of the approximation is based on a Taylor series expansion. A population model with a
polynomial is:

Y = β0 + β1X1 + β2X2
1 + β3X3

1 + · · · + βrXr
1 + ϵ (8.1)
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Figure 8.1: Price of diamonds, and carats, with OLS estimated line.

●●●●
●●●●
●●
●●●●

●●●●●●
●●●●
●●●●

●
●
●●●

●
●

●●●●
●
●
●
●●●●
●●●●
●
●●
●●●

●

●●
●

●

●
●

●

●
●●

●

●
●
●●● ●

●

●

●● ●●

●●
● ●

●
●

●

●

●
●

●●●●

●
●

●

●
●●

●●
●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●
●
●●
●

●
●

●

●

●
●

●
●
●●
●
●

●

●
●

●
●

●

●

●
●
●

●

●●●●●●●
●●●●●●●●●●●

●●●●
●●●●●

●●●●
●●●●
●
●●

●●
●●●●●
●●
●●●

●●●●

●
●●

●●

●●●
●

●
●
●

●
●
●

●
●

● ●●

●
●

●

●

●
●
●
●●

●
●●●

●●●
●●

●
●
●●●●

●

●
●
●
●

●

●

●
●
●

●●

●

●●
●
●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●
●
●●
●
●
●

●

●

●

●

●
●

●●●
●

●

●

●

● ●

0.2 0.4 0.6 0.8 1.0

50
00

10
00

0
15

00
0

carat

pr
ic

e

Equation 8.1 has a polynomial of degree r in X1. If r = 2 we get a quadratic equation, and if r = 3
we get a cubic equation. Note that this is just the linear model that we have been using all along, but
some of the regressors are powers of X1. Other variables (X2, X3, etc.) can be added as usual. With
the polynomial, estimation by OLS, and hypothesis testing, is the same as usual. Including powers of
X1 in the model as additional regressors is not a violation of no perfect multicollinearity (assumption
A.2), because the relationship between the regressors is not linear.

8.2.1 Interpreting the βs in a polynomial model
The βs in the polynomial model become much more difficult to interpret. This is the point in including
them. We are trying to model a (more complicated) non-linear relationship. Let’s take a population
model with a quadratic term (usually squaring is sufficient to model the non-linear effect):

Y = β0 + β1X1 + β2X2 + β3X2
2 + ϵ (8.2)

In equation 8.2, β1 is the marginal effect of X1 on Y , but the marginal effect of X2 on Y depends
on both β2 and β3. That is, β2 and β3 don’t make much sense by themselves. If we take the partial
derivative of Y with respect to X2, we get:

∂Y

∂X2
= β2 + 2β3X2

This derivative tells us that the squared term (X2
2 ) allows the effect of X2 on Y to depend on the value

of X2. A change in Y due to a change in X2 is not constant, but depends on the value of X2.
Including the squared term is just a mathematical “trick” for approximating the non-linear relation-

ship. For example, if β2 is positive, then a negative β3 means there is a diminishing effect, and a positive
β3 means there is an increasing effect. OLS is free to choose values for β2 and β3 to best capture any
non-linear relationship.

In order to obtain an interpretation for our estimated polynomial model, we can consider specific
OLS predicted values. If we consider a lot of predicted values, we can plot them out in the data and see
our estimated equation. If we calculate at least two pairs of predicted values, and take the differences
between them, we can get an idea about how the estimated effect depends on the value of the X variable.
This is illustrated in a following example.
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8.2.2 Determining r

To determine the degree (r) of the polynomial, we can use a series of t-tests. We can start with a
polynomial of degree r, and test the null hypothesis H0 : βr = 0. If we fail to reject (implying that Xr

is not needed) then we re-estimate the model with a polynomial of degree r − 1. The process repeats
until the null hypothesis is rejected. However, in most econometrics models only squared terms are used
if needed; very rarely are there cubed (or higher) terms. Testing for the degree of r is illustrated in the
following example.

8.2.3 Modelling the non-linear relationship in the Diamond data
We start by loading the Diamond data:

diamond <- read.csv("https://rtgodwin.com/data/diamond.csv")

and estimating the linear model, price = β0 + β1carat + ϵ:

summary(lm(price ~ carat, data=diamond))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -2298.4 158.5 -14.50 <2e -16 ***
carat 11598.9 230.1 50.41 <2e -16 ***

It is estimated that an increase in carat of 1 is associated with an increase in the price of a diamond
by $11598.9. It might be more sensible to consider the smaller increase of 0.1 carats: an increase of 0.1
carats is associated with an increase in price of $1160. This effect is the same whether the diamond is
small or large to begin with.

In order to allow for the effect of carat on price to depend on the size of the diamond, we can include
a quadratic term, and estimate the population model price = β0 + β1carat + β2carat2 + ϵ. We can
include the new variable carat2 in the model using the I() function (where ˆ is the power operator;
shift-6 on most keyboards):

summary(lm(price ~ carat + I(carat^2), data=diamond))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -42.51 316.37 -0.134 0.8932
carat 2786.10 1119.61 2.488 0.0134 *
I(carat ^2) 6961.71 868.83 8.013 2.4e -14 ***

Notice that carat2 is highly statistically significant. There is evidence that the effect is non-linear.
The positive sign on carat2 means that we have estimated an increasing marginal effect. How do we

interpret our estimated βs further? That is, what is the estimated effect of carats on price? The key is
to calculate some OLS predicted values, to consider some specific scenarios. In figure 8.2, I calculate 50
OLS predicted values by choosing values for carat at regular intervals, and plot them over the Diamond
data. Notice that our estimated equation captures the half “U” shape, and seems to fit the data well.

The predicted values used in figure 8.2 were obtained by substituting different values for carat into
the estimated equation:

ˆprice = −42.51 + 2786.10carat + 6967.71carat2 (8.3)

Now, let’s focus on two specific scenarios: the effect of an increase in carats when (i) the diamond
is small, and (ii) the diamond is large. Let’s consider an increase of 0.1 in carats when the diamond is
(i) 0.2 carats in size, and (ii) 1 carat in size. We need two predicted values for each scenario. For (i),
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Figure 8.2: Diamond data, with estimated quadratic model.
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we get the predicted values for carat = 0.2 and for carat = 0.3:

ˆprice|carat=0.2 = −42.51 + 2786.10(0.2) + 6967.71(0.2)2 = 793
ˆprice|carat=0.3 = −42.51 + 2786.10(0.3) + 6967.71(0.3)2 = 1420

and take the difference between these two predicted values:

ˆprice|carat=0.3 − ˆprice|carat=0.2 = 1419.88 − 793.18 = 627

So, the predicted effect of an increase in carats of 0.1, when the diamond is 0.2 carats, is $627. We can
also get this value by using the R code:

predict(quadmod, data.frame(carat = 0.3)) - predict(quadmod, data.frame(carat = 0.2))

> 626.6952

Now we consider the effect of a 0.1 increase in carats for (ii) a large diamond:

ˆprice|carat=1 = −42.51 + 2786.10(1) + 6967.71(1)2 = 9705
ˆprice|carat=1.1 = −42.51 + 2786.10(1.1) + 6967.71(1.1)2 = 11446

and again take the difference between the two predicted values:

ˆprice|carat=1.1 − ˆprice|carat=1 = 11446 − 9705 = 1741

The predicted effect of an increase in carats is larger, when the diamond is larger. That is, the estimated
effect of a 0.1 increase in carats is $1741.

The important point of this exercise is the following. The estimated effect of carats on price is much
different depending on whether the diamond is large or small ($627 when carats = 0.2 vs. $1741 when
carats = 1. The linear model estimates a constant effect of $1160, which misses out on important
non-linearities.

Finally, we determine the appropriate degree of the polynomial in carat (in practice, we should
begin with this step). Let’s estimate a cubic model: price = β0 + β1carat + β2carat2 + β3carat3 + ϵ.
To estimate the model, use:
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summary(lm(price ~ carat + I(carat^2) + I(carat^3), data=diamond))

( Intercept ) 786.3 765.4 1.027 0.3051
carat -2564.2 4636.9 -0.553 0.5807
I(carat ^2) 16638.9 8185.3 2.033 0.0429 *
I(carat ^3) -5162.5 4341.9 -1.189 0.2354

The cubed variable, carat3, is insignificant (with p-value 0.2354). The quadratic specification is suf-
ficient for capturing the non-linear relationship between carat and price. It is often the case that a
quadratic specification is good enough.

8.3 Logarithms
Another way to approximate the non-linear relationship between Y and X is by using logarithms.
Logarithms can be used to approximate a percentage change. If the relationship between two variables
can be expressed in terms of proportional or percentage changes, then it is a type of non-linear effect.
To see this, consider a 1% increase in 100 (which is 1), and a 1% increase in 200 (which is 2). The same
1% increase can be generated by different changes in the variable (e.g. a change of 1 or of 2).

For example, consider an increase in hourly wage of $1. That is not a big increase for someone
making $50 per hour (an increase of only 2%). This change in wage is unlikely to have much effect on
the behaviour of the individual. However, imagine an individual whose hourly wage is only $1 per hour.
An increase of $1 doubles the wage (100% increase)! This is likely to have a big impact on behaviour.

It is desirable to measure thinks like wage in terms of proportional or percentage changes (regard-
less of whether it is included in a model as the dependent variable or as a regressor). This can be
accomplished by using the log of the variable in the regression model, instead of the variable itself.

8.3.1 Percentage change
Let’s be explicit about what is meant by a percentage change. A percentage change in X is:

∆X

X
× 100 = X2 − X1

X1
× 100

where X1 is the starting value of X, and X2 is the final value.

8.3.2 Logarithm approximation to percentage change
The approximation to percentage changes using logarithms is:

log (X + ∆X) − log (X) × 100 ≈ ∆X

X
× 100

or

log (X2 − X1) × 100 ≈ X2 − X1
X1

× 100

So, when X changes, the change in log(X) is approximately equal to a percentage change in X.
The approximation is more accurate the smaller the change in X. Table 8.1 shows variation percentage
changes in X, and the approximate change using the log function. The approximation does not work
well for changes above 10%.

8.3.3 Logs in the population model
The log function can be used in our population model so that the βs have various percentage changes
interpretations. There are three ways we can introduce the log function into our models. The three
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Table 8.1: Percentage change, and approximate percentage change using the log function.

Change in X
Percentage change:

X2−X1
X1

× 100
Approximated percentage change:

(log X2 − log X1) × 100

X1 = 1, X2 = 2 100% 69.32%
X1 = 1, X2 = 1.1 10% 9.53%
X1 = 1, X2 = 1.01 1% 0.995%
X1 = 5, X2 = 6 20% 18.23%
X1 = 11, X2 = 12 9.09% 8.70%
X1 = 11, X2 = 11.1 0.91% 0.91%

Table 8.2: Three population models using the log function.
Population model Population regression function

I. linear-log Y = β0 + β1 log X + ϵ
II. log-linear log Y = β0 + β1X + ϵ
III. log-log log Y = β0 + β1 log X + ϵ

different possibilities arise from taking logs of the left-hand-side variable, one or more of the right-hand-
side variables, or both. Table 8.2 shows these three cases.
For each of the three different population models in table 8.2, β1 has a different percentage change
interpretation. We don’t derive the interpretations of β1, but instead list them for the three different
cases in table 8.2:

• linear-log: a 1% change in X is associated with a 0.01β1 change in Y .
• log-linear: a change in X of 1 is associated with a 100 × β1% change in Y .
• log-log: a 1% change in X is associated with a β1% change in Y . β1 can be interpreted as an

elasticity.

8.3.4 A note on R2

R2 and R̄2 measure the proportion of variation in the dependent variable (Y ) that can be explained
using the X variables. When we take the log of Y in the log-linear or log-log model, the variance of
Y changes. That is, Var[log Y ] ̸= Var[Y ]. We cannot use R2 or R̄2 to compare models with different
dependent variables. That is, we should not use R2 to decide between two models, where the dependent
variable is Y in one, and log Y in the other.

8.3.5 Log-linear model for the CPS data
It is common to use the log of wage as the dependent variable, instead of just wage. This allows for the
factors that determine differences in wages to be associated with approximate percentage changes in
wage. In the following, we’ll see an example of a log-linear model estimated using the CPS data. Start
by loading the data:

cps <- read.csv("https://rtgodwin.com/data/cps1985.csv")

and estimate a log-linear model:

log(wage) = β0 + β1education + β2gender + β3age + β4experience + ϵ
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summary(lm(log(wage) ~ education + gender + age + experience, data = cps))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) 1.15357 0.69387 1.663 0.097 .
education 0.17746 0.11371 1.561 0.119
genderfemale -0.25736 0.03948 -6.519 1.66e -10 ***
age -0.07961 0.11365 -0.700 0.484
experience 0.09234 0.11375 0.812 0.417

The interpretation of the estimated coefficient on education, for example, is that a 1 year increase in
education is associated with a 17.8% increase in wage. The interpretation of the coefficient on the dummy
variable genderfemale is a bit more tricky. It is estimated that women make (100×(exp(−0.257)−1) =
−22.7%) 22.7% less than men. For simplicity, however, we can say that women make approximately
25.7% less than men, but you should know that this interpretation is actually wrong.

The advantage of using log wage as the dependent variable is that it allows the estimated model to
capture non-linear effects. The 25.7% decrease in wages for women means that the dollar difference in
wages between women and men in high-paying jobs (such as medicine) is larger than the dollar difference
in wages between women and men in lower-paying jobs.

8.3.6 Log-log model for CO2 emissions
In this section, we use data on per capita CO2 emissions, and GDP per capita (data is from 2007). We
will suppose that CO2 emissions is the dependent variable. Load the data, and create the plot:

co2 <- read.csv("http://rtgodwin.com/data/co2.csv")
plot(co2$gdp.per.cap, co2$co2,

ylab = "CO2 emissions per capita", xlab = "GDP per capita")

Figure 8.3: Per capita CO2 emissions and GDP.

Consider this (possibly wrong) population model:

CO2 = β0 + β1GDP + ϵ (8.4)

As GDP gets larger, CO2 emissions are all over the place. The problem with model 8.4 is that GDP has
the same effect on CO2 everywhere (for all levels of GDP). Since energy consumption (which produces
CO2 emissions) is a relatively inelastic good, it may be reasonable to think that an increase in GDP
per capita of say $1000 has a much bigger impact on CO2 emissions when GDP per capita is low. That
is, their may be a non-linear relationship. If we take the logs of CO2 and GDP per capita, then we are
saying that percentage changes in per-capita GDP lead to percentage changes in CO2:

log(CO2) = β0 + β1 log(GDP ) + ϵ (8.5)
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Plot the data (see Figure 8.4):

plot(log(co2$gdp.per.cap), log(co2$co2),
ylab = "log CO2 emissions per capita", xlab = "log GDP per capita")

In Figure 8.4, it is much easier to see that there is a strong and positive relationship between per capita
CO2 emissions and per capita GDP. Now, let’s estimate model 8.5:

co2mod <- lm(log(co2) ~ log(gdp.per.cap), data = co2)
summary(co2mod)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -9.94045 0.36806 -27.01 <2e -16 ***
log(gdp.per.cap) 1.20212 0.04234 28.39 <2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6642 on 132 degrees of freedom
Multiple R- squared : 0.8593 , Adjusted R- squared : 0.8582
F- statistic : 806.1 on 1 and 132 DF , p-value: < 2.2e -16

The interpretation of the results is that for every 1% increase in GDP per capita, it is estimated that
CO2 emissions increase by 1.2%.

Figure 8.4: Log per capita CO2 emissions and log GDP.

8.4 Review Questions
1. What is a polynomial regression model?
2. Why is it important to have a model that can capture non-linear effects?
3. Use the following in R to load the data necessary for this question:

dat <- read.csv("https://rtgodwin.com/data/chap8poly.csv")

a) Plot the data. Which variable might have a non-linear relationship with Y ?
b) Estimate the population model: Y = β0 + β1X1 + β2X2

1 + β3X3
1 + β4X4

1 + β5X2 + ϵ.
c) Determine the appropriate degree of the polynomial in X1 (determine the right r).
d) What is the estimated effect of X1 on Y ?
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Figure 8.5: Question 3, part (a).
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4. Other than polynomials, what is another way to capture a non-linear effect in an OLS regression
model?

5. What are the interpretations of the βs in population models that use logarithms?
6. Using the diamond data, estimate a linear-log, log-linear, and log-log model. Interpret your results

in each case.

8.5 Answers
1. A polynomial regression model is one that includes powers of one or more of the X variables as

additional regressors (e.g. X2
3 , X3

3 ). This is done in order to approximate a non-linear relationship
between the X and Y variables.

2. Many models in economics specify non-linear relationships between the variables. We want our
econometric models to represent the features of the economic model. If non-linear relationships
are ignored, the OLS estimator may be biased.

3. a) A plot of the data reveals that there is a possible non-linear relationship between X1 and Y :

plot(X1, Y)

See figure 8.5. When using plot(dat$X2, dat$Y), the relationship between X2 and Y looks
linear.

b) Estimate the model:

summary(lm(Y ~ X1 + I(X1^2) + I(X1^3) + I(X1^4) + X2, data = dat))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.901e+02 1.809e+01 10.509 < 2e -16 ***
X1 -1.059e+01 3.135e+00 -3.380 0.000878 ***
I(X1 ^2) 5.076e -01 1.807e -01 2.810 0.005468 **
I(X1 ^3) -3.431e -03 4.132e -03 -0.831 0.407262
I(X1 ^4) 3.141e -05 3.229e -05 0.973 0.331872
X2 -2.015e+00 6.118e -02 -32.944 < 2e -16 ***

c) In part (b), X2
1 , X3

1 , and X4
1 were included in the regression, so that r = 4. We may not need

to go as high as X4
1 in order to adequately model the non-linear relationship between X1
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and Y . To determine the appropriate r, we can see if the highest power of X1 is statistically
significant. If not, we drop it from the model, and try again, stopping when the highest
power is significant.
From the R output in part (b), we see that X4

1 is “insignificant” (we fail to reject the null
hypothesis that β4 = 0). This indicates that X4

1 is not needed in the polynomial, so we drop
it from the model:

summary(lm(Y ~ X1 + I(X1^2) + I(X1^3) + X2, data = dat))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.775e+02 1.260e+01 14.081 < 2e -16 ***
X1 -7.870e+00 1.409e+00 -5.586 7.71e -08 ***
I(X1 ^2) 3.382e -01 4.818e -02 7.020 3.60e -11 ***
I(X1 ^3) 5.584e -04 4.985e -04 1.120 0.264
X2 -2.023e+00 6.070e -02 -33.326 < 2e -16 ***

Now, we test to see if X3
1 is insignificant (from the output above, it is). Dropping it from

the model we get:

summary(lm(Y ~ X1 + I(X1^2) + X2, data = dat))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 188.355857 8.024835 23.47 <2e -16 ***
X1 -9.337920 0.517857 -18.03 <2e -16 ***
I(X1 ^2) 0.391436 0.007933 49.34 <2e -16 ***
X2 -2.015532 0.060387 -33.38 <2e -16 ***

Finally, we see that the highest power of X1 (now X2
1 ) is statistically significant. We cannot

drop it from the model. The appropriate degree of the polynomial in X1 is r = 2.
d) In the estimated model

Ŷ = b0 + b1X1 + b2X2
1 + b3X2

one way to interpret the estimated effect of X1 on Y is to consider specific OLS predicted
values. The difficulty in interpretation arises because the effect of X1 on Y now also depends
on X2

1 , so that both b1 and b2 must be considered together.
The whole point of using the squared term (X2

1 ) is to allow the change in Y due to a change
in X1 to depend on the value of X1 itself. So, let’s consider a change in X1 of 1 unit, for two
different starting values of X1: 20 and 40.

Ŷ |X1=21 − Ŷ |X1=20 = (−9.338 × 21 + 0.391 × 212)
− (−9.338 × 20 + 0.391 × 202) = 6.693

When X1 = 20, the effect of a 1 unit increase in X1 is to increase Y by 6.693. Let’s try for
a larger value of X1:

Ŷ |X1=41 − Ŷ |X1=40 = (−9.338 × 41 + 0.391 × 412)
− (−9.338 × 40 + 0.391 × 402) = 22.333

The estimated effect of X1 on Y is much larger, for larger values of X1.
4. Besides polynomials, we can also take the logarithms of the X and/or Y variables. Exploiting a

property of logarithms that small changes in log X (or log Y ) are approximately equal to percentage
changes in X (or Y . This leads the βs in the population regression model to have approximate
percentage change interpretations of one variable on another. A percentage change is a non-linear
change, since the actual amount of the change depends on the starting value.
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5. See table 8.2 for the different population models using logs, and see the following discussion for
the interpretations of the βs in the different models.

6. Load the diamond data:

diam <- read.csv("https://rtgodwin.com/data/diamond.csv")

The linear-log model:

summary(lm(price ~ log(carat)))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 8397.4 133.7 62.78 <2e -16 ***
log(carat) 5833.8 172.2 33.87 <2e -16 ***

The interpretation is that a 1% increase in carats is associated with an increase in price of $58.34.
The log-linear model:

summary(lm(log(price) ~ carat, data = diam))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 6.44488 0.02938 219.40 <2e -16 ***
carat 2.84155 0.04264 66.64 <2e -16 ***

The interpretation is that an increase in carats of 1 is associated with an increase in price of 284%
(it may be more sensible to instead say that a 0.1 increase in carats is associated with a 28.4%
increase in price).
Finally, the log-log model:

summary(lm(log(price) ~ log(carat), data = diam))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 9.12775 0.01440 633.99 <2e -16 ***
log(carat) 1.53726 0.01854 82.92 <2e -16 ***

The interpretation is that a 1% increase in carats is associated with a 1.53% increase in price.



Chapter 9

Interaction terms

Interaction terms can model a type of non-linear effect between variables. They are useful when the
effect of X on Y may depend on a different X or D variable. The interaction term (D × X) allows for
a different linear effect between the two groups (the groups defined by D). Both of the variables in the
interaction term can be dummy variables (D1 × D2), or both of the variables in the interaction can be
continuous (X1 × X2), but the latter situation is somewhat rare and we do not discuss it here.

Figure 9.1: Same data is plotted in both panels. In the right panel, we use a dummy variable D to
colour code the data points, revealing that there are separate regression lines for each group.

9.1 Simple example
To illustrate the usefulness of interaction terms, we use a fake data set. The variables are:

• Y - the dependent variable
• X - an explanatory variable
• D - a dummy variable

The data is plotted in Figure 9.1. When we use the dummy variable D to colour code the data points,
we see that there are two different regression lines. Let’s begin by estimating a simple model:

Y = β0 + β1X + β2D + ϵ (9.1)

In R we can use:
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summary(lm(Y ~ X + D), data=mydata)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -9.67535 2.00733 -4.820 2.86e -06 ***
X 1.99131 0.09807 20.304 < 2e -16 ***
D -4.59618 0.72893 -6.305 1.85e -09 ***

Results:

• b0 = -9.68. This is the intercept for the D = 0 group.
• b1 = 1.99. An increase in X of 1 leads to an average increase in Y of 1.99. This is the marginal

effect of X on Y .
• b2 = -4.60. The D = 1 group Y values are 4.60 less than the D = 0 group, on average. The

intercept shifts down by this amount for the D = 1 group, so that their intercept is b0 + b2 = -9.68
- 4.60 = -14.28.

The estimated model is shown in Figure 9.2 (left panel). The D = 1 group’s regression line is 4.60
lower. We have two different regression lines for the two different groups, but they both have the same
slope. We want them to have different slopes!

9.2 Dummy-continuous interaction
Ideally, we would like a separate regression line for the two groups, since the effect of X on Y may differ
for the two. We need something new: an interaction term. This will allow for two separate marginal
effects (slopes) for the two groups.

Dummy-continuous interaction term: When X is a continuous variable and D is a dummy vari-
able, D × X is a new variable called an interaction term. It allows for the effect of X on Y to differ
between the two groups defined by the dummy.

Putting the interaction term into the model gives us:

Y = β0 + β1X + β2D + β3(D × X) + ϵ (9.2)

where D × X is the interaction term, and is a new variable that is created by multiplying the other two
variables together. To see how model 9.2 allows for two separate lines, consider what the population
model is for D = 0, and separately for D = 1.

Population model for D = 0
Let’s substitute in the value D = 0 into equation 9.2 and get the population model for the first group:

Y = β0 + β1X + β2(0) + β3(0 × X) + ϵ

= β0 + β1X + ϵ
(9.3)

From equation 9.3, we can see that the intercept is β0 and the slope is β1.

Population model for D = 1
Substituting in the value D = 1 into equation 9.2, we get the population model for the other group:

Y = β0 + β1X + β2(1) + β3(1 × X) + ϵ

= (β0 + β2) + (β1 + β3)X + ϵ
(9.4)

For the D = 1 group, the intercept is β0 + β2 and the slope is β1 + β3. The marginal effect of X on Y
differs by β3 between the two groups.
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Figure 9.2: Left panel model (equation 9.1) uses a dummy variable, which allows for a different intercept
for the two groups. Right panel model (equation 9.2) uses a dummy variable and an interaction term,
which allows for a different intercept and different slope.

9.2.1 R code for an interaction term
We can include the interaction term by adding the term I(D * X) to the lm() function:

summary(lm(Y ~ X + D + I(D*X)), data=mydata)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 10.25251 1.73101 5.923 1.4e -08 ***
X 0.98663 0.08581 11.497 < 2e -16 ***
D -47.61500 2.56503 -18.563 < 2e -16 ***
I(D * X) 2.13132 0.12499 17.052 < 2e -16 ***

The estimated value of b3 = 2.13 means that the effect of X on Y (the slope) is 2.13 higher for the
D = 1 group. That is, the effect of X on Y is 0.99 for D = 0, and (0.99 + 2.13 = 3.12) for D = 1. The
two different regression lines, with the two different slopes, are shown in the right panel of Figure 9.2.

9.2.2 Example: land ruggedness and GDP
This example comes from “Ruggedness: The Blessing of Bad Geography in Africa”, by Nunn and Puga
(2012). The data is available from the authors here. The main variables in the study, for each of 170
countries, are:

Variable Description
log(GDPpercap) Log real GDP per capita from 2000. This is the dependent variable, or y variable.

rugged A Terrain Ruggedness Index that measures the amount of variation in the
elevation of a country. It is a continuous variable. The higher the ruggedness, the
more difficult the terrain is to traverse. This is the x variable.

Africa A dummy variable equal to 1 if the country is in Africa. This is the D variable.

Rugged terrain hinders trade and productive activities, so the higher the ruggedness of a country,
the lower the GDP (a negative relationship between x and y). However, the authors argue that the

https://diegopuga.org/data/rugged/
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Figure 9.3: Data is from Nunn and Puga (2012). Log real GDP per capita (from 2000) for 170 countries,
and a measure of the ruggedness of the terrain in each country. A model with a dummy variable
for African countries, and an interaction term with the dummy and ruggedness, is estimated. The
interaction term allows for a different effect of difficult terrain on GDP, depending on whether the
country is African or not.

relationship is opposite (positive) for African countries. The rationale is that rugged terrain offered
protection from the slave trades. The slave trades hindered future economic development. For African
countries, the higher the ruggedness, the higher the GDP.
The population model is:

log(GDPpercap) = β0 + β1rugged + β2Africa + β3(Africa × rugged) + ϵ

Download the data1 and use lm() with an interaction term I(cont_africa * rugged):

rug <- read.csv("https://rtgodwin.com/data/rugged.csv")
mod <- lm(log(rgdppc_2000) ~ rugged + cont_africa + I(cont_africa * rugged), data=rug)
summary(mod)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 9.22323 0.13965 66.044 < 2e -16 ***
rugged -0.20286 0.07739 -2.621 0.00958 **
cont_ africa -1.94805 0.22726 -8.572 6.79e -15 ***
I(cont_ africa * rugged ) 0.39339 0.13163 2.989 0.00323 **
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9438 on 166 degrees of freedom
Multiple R- squared : 0.3569 , Adjusted R- squared : 0.3453
F- statistic : 30.71 on 3 and 166 DF , p-value: 7.595e -16

All variables are significant. The estimate -0.20286 means that for every increase in a country’s rugged-
ness of 1, GDP is 20.286% lower on average. But, African countries are significantly different. The
variable cont_africa * rugged allows for the effect of ruggedness to be different between the two
groups, and it is significant with a p-value of 0.00323. For African countries, an increase of ruggedness
of 1 leads to an increase in GDP of −20.286% + 39.339% = 19.053%.
1As per Nunn and Puga (2012), the missing values for GDP were removed.
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9.3 Dummy-dummy interactions
A dummy-dummy interaction is when two different dummy variables are multiplied together, creating
a new variable. This new variable allows for an overlap or combination of the two categories. The two
dummy variables by themselves allow for the groups to have different means, and the interaction term
allows for a combination of the.

Two dummy variables without an interaction
As an example, we will use a version of the CPS data:

dat <- read.csv("https://rtgodwin.com/data/twodummies.csv")

In this example, the university variable is a dummy variable which equals to 1 if the individual has
a university (BA) degree, and 0 otherwise. The other dummy variable in the data is female.

Variable Description
wage hourly wage of the worker

female = 1 if the individual is female
= 0 if male

university = 1 if the individual has a university degree
= 0 if no university degree

age the age of the worker in years

First, we estimate the standard model without the interaction term, with log(wage) as the dependent
variable:

log(wage) = β0 + β1female + β2university + β3age + ϵ

Estimate this in R:

summary(lm(log(wage) ~ female + university + age, data = dat))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) 2.016700 0.043388 46.48 <2e -16 ***
female -0.152178 0.008503 -17.90 <2e -16 ***
university 0.337940 0.008409 40.19 <2e -16 ***
age 0.026435 0.001439 18.37 <2e -16 ***

The interpretation of the results is that women make 15% less than men, and that a university degree
increases wage by 34%. However, this model does not allow for the possibility that education has a
different effect for women than it does for men. There is a difference between men and women, and
there is a difference for a university degree, but there is no difference in the effect of university for men
vs. women. See Figure 9.4.

Two dummy variables and an interaction term
To allow for education to have a different effect for men than for women, we estimate the model:

log(wage) = β0 + β1female + β2university + β3(female × university) + β4age + ϵ

where β3 is the additional percentage increase in wages for women with an education, versus men with
an education. In R, we can do this by:
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Figure 9.4: University makes a difference, and gender makes a difference, but there is not a separate
difference for university educated women.

Figure 9.5: With a dummy-dummy interaction term, there is now a difference between all four groups.

summary(lm(log(ahe) ~ female + bachelor + I(female * bachelor) + age,
data = cps))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) 2.01896 0.04338 46.541 < 2e -16 ***
female -0.17347 0.01173 -14.791 < 2e -16 ***
university 0.31895 0.01107 28.809 < 2e -16 ***
I( female * university ) 0.04489 0.01704 2.635 0.00842 **
age 0.02662 0.00144 18.479 < 2e -16 ***

It is estimated that women make 17% less than men, that men with a degree make 32% more than men
without a degree, and that women with a degree make (32% + 4.5% ≈ 36%) more than women without
a degree. There is a difference for men, a difference for women, and the difference between these two
differences is β3 (4.5%). See Figure 9.5.
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9.3.1 Hypothesis tests involving dummy interactions
An important use of dummy interaction terms is to test whether there is a different effect between
two groups. In the simple example, the interaction term measures the difference in the slope between
the two groups. To test the hypothesis that the slope is the same for both groups, we could test the
hypothesis:

H0 : β3 = 0
HA : β3 ̸= 0

in the model:

Y = β0 + β1X + β2D + β3(D × X) + ϵ

From the regression output from before, we see that the interaction term is highly significant, and we
reject the null hypothesis. There is evidence that there is a different marginal effect for the two groups.

Similarly, testing β3 = 0 in the model:

log(wage) = β0 + β1female + β2university + β3(female × university) + β4age + ϵ

is a test of whether there is a different effect of education for women than for men. From the regression
output in the previous section, we see that the p-value for the estimated coefficient on fem_bach is
0.00842. We reject the null that there is no difference in the effect of education between men and
women at the 1% significance level.

9.3.2 Some additional points
The third possibility, a continuous-continuous interaction term, was left out of the discussion. For
example, the returns to education (measured in years as a continuous variable) may diminish as the
worker ages (also a continuous variable). To capture this idea, we could multiply these two continuous
variables together, and include the product in our regression.

Some of the models presented in this section had dummy variable interaction terms that resulted in
completely separate regression functions for the different groups. This complete separation was due to
the simplicity of the models. That is, no other variables were included. We can include other variables
in the regression as usual. The interaction terms then have the interpretation of a difference between
groups, while controlling for other factors (ceteris paribus).

Finally, the dummy interaction may involve multiple variables. This is particularly important when
the polynomial regression model is used to capture a non-linear effect. For example, we might have
used education2 as a variable to capture a non-linear effect. Using a dummy interaction with education
should then involve both of the variables (education and education2). A test for no differences between
groups would then require the F -test.

9.4 Differences-in-Differences (DiD)
Differences-in-Differences (DiD) is a very popular framework for estimating a causal effect, that relies
on the use of a dummy-dummy interaction term. In this section, we will look at a classic example
involving minimum wage and employment.

9.4.1 Motivating example: minimum wage increase in New Jersey
Economists David Card and Alan Krueger sought to examine the effect of an impending minimum
wage increase by measuring the employment in fast food restaurants before and after the wage increase.
Contrary to conventional wisdom, they found an increase in employment, using DiD2.
2Card, D., & Krueger, A. B. (1993). Minimum wages and employment: A case study of the fast food industry in New
Jersey and Pennsylvania
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Figure 9.6: In the early 90s, conventional economics wisdom held that an increase in the minimum wage
would cause employment to decrease (image created by Stable Diffusion).

In 1992, New Jersey’s minimum wage was set to increase from $4.25 to $5.05 per hour. Card and
Krueger surveyed 410 fast-food restaurants before and after the minimum wage increase, recording each
restaurant’s number of employees before and after the wage increase. Download the data:

did <- read.csv("https://rtgodwin.com/data/card.csv")

The variables we’ll look at in this example are:

Variable Description
EMP the number of full-time employees

TIME = 1 if employment was measured after the minimum wage increase
= 0 if employment was measured before the minimum wage increase

STATE = 1 if employment was measured in New Jersey
= 0 if employment was measured in Pennsylvania

To take a naive approach to estimate the impact of the minimum wage increase on employment, we
could take the difference in average employment before and after the wage increase:

¯EMP |ST AT E=1,T IME=1 − ¯EMP |ST AT E=1,T IME=0 = 0.47

which in R can be obtained using:

mean(did$EMP[did$STATE == 1 & did$TIME == 1])
- mean(did$EMP[did$STATE == 1 & did$TIME == 0])

[1] 0.4666667

From our earlier discussion on dummy variables in Section 5.3, we know that we can obtain the same
result using least-squares and a dummy variable, by estimating the model:

EMP = β0 + β1TIME + ϵ

which in R can be obtained from:
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Figure 9.7: The fundamental problem of causal inference. The causal effect of a treatment can never
be observed, because we can’t observe both the outcome under treatment, and under no treatment.

dids <- subset(did, STATE == 1)
summary(lm(EMP ~ TIME, data=dids))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 20.4306 0.5289 38.627 <2e -16 ***
TIME 0.4667 0.7480 0.624 0.533
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.298 on 616 degrees of freedom
Multiple R- squared : 0.0006315 , Adjusted R- squared : -0.0009909
F- statistic : 0.3892 on 1 and 616 DF , p-value: 0.5329

From the above output, we see that there has been a small increase in employment over time, but that
the increase is not statistically significant (the p-value is 0.533).

It might be tempting to attribute the change in employment over time to the increase in minimum
wage, and call it the causal effect. But this is tough to justify. The problem is, what if employment was
increasing (or decreasing) over time anyway?

9.4.2 Estimating the causal effect of a treatment: the fundamental problem of causal inference
The true causal effect of the minimum wage increase on employment is the difference between what
did happen in New Jersey, and what would have happened in New Jersey without the minimum wage
increase. We cannot observe both of these “potential” outcomes! This is the fundamental problem of
causal inference. See Figure 9.7.

Typically, we are interested in estimating the difference that a treatment makes. That is we want to
know:

E [y1 − y0]

where y1 is the potential outcome with treatment and y0 is the potential outcome without treatment
(only one of these outcomes can be observed!). “Treatment” is broadly defined and doesn’t necessarily
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refer to treatment with a drug. Some examples of treatments (and outcomes) are:

• Health insurance (y1 and y0 the number of visits to the doctor with or without insurance).
• Education (y1 and y0 the wage with/without an education).
• A job training program (y1 and y0 the employment rate with/without the program).
• Monetary policy.
• Student debt forgiveness.
• Information.
• Increase in the minimum wage (y1 and y0 the employment rate).

Because an individual can’t be in both states (treated and not treated), we can’t observe both y1 and
y0. We can never observe a causal effect!

• One of the two outcomes will occur, and is factual.
• The other outcome is imagined, or counterfactual.
• We only ever observe either y1 or y0.
• To estimate a causal effect, we must predict the missing values. See Table 9.1.

What would it take to truly observe a causal effect? Jeffrey Wooldridge has called the fundamental
problem of causal inference a problem of “missing data” (we are missing either y1 or y0 for each in-
dividual). How could we observe the missing data? In the New Jersey minimum wage example, we
might travel back in time and prevent the minimum wage from increasing, so that we could observe
the employment level without the minimum wage increase (the missing y0). Alternatively, perhaps we
could find a parallel universe where everything is the same except that New Jersey did not increase
their minimum wage in 1992. Barring time travel or observing parallel universes, it seems we have to
think in counterfactuals and try to find ways to estimate what the unobserved outcome (y1 or y0) would
have looked like so that we can calculate y1 − y0.

Table 9.1: To estimate a causal effect, we need the outcomes under “no treatment” to be similar to the
outcomes that the treated individuals would have experienced, had they not been treated. Sometimes
we can assume that the average y0 we observe for the “no treatment” group is the same as we would
observe for the treated group (if they instead hadn’t been treated). This is often possible in a randomized
controlled experiment, but with economics it usually difficult to justify this link between the treated
and not treated groups.

Unit Treated Outcome under Outcome under
treatment (y1) no treatment (y0)

1 yes ✓ ?
2 yes ✓ ?
3 no ? ✓
4 no ? ✓

9.4.3 DiD for the New Jersey data
The naive approach for the New Jersey data was to take the difference between New Jersey’s employment
before and after the wage increase. But for this to be the causal effect, we would need to assume that the
level of employment would have stayed constant over the 9 months in which employment was measured!
This is not likely. We need to try to estimate what would have happened in New Jersey if there had
been now wage increase. We can do this using the DiD estimator, which in this case can be calculated
from the sample means for the four different groups. See Table 9.4.
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Table 9.2: Average employment by STATE and TIME. These average employment levels are also depicted
in Figure 9.8.

TIME = 0 TIME = 1 Difference
Pennsylvania

STATE = 0 23.380 21.096 -2.283
(no treatment)

New Jersey
STATE = 1 20.431 20.897 0.466
(treatment)
Difference -2.949 -0.199 2.750

• We’ll make the parallel trends assumption: the difference in employment that occurred for
the control group would have also occurred for the treatment group (if they hadn’t have been
treated): -2.283. This is our estimated y0, the employment outcome that would have occurred if
the minimum wage increase hadn’t have happened (this is the counterfactual).

• The difference in employment that actually did occur under treatment was 0.466. This is our
factual y1.

• The difference-in-difference (DiD) is 0.466 – (-2.283) = 2.750.

We got the DiD estimator above by differencing sample means between four groups. But often, we want
to include other “X” variables in the model in order to avoid OVB. In such cases, we can use LS, and
if we estimate the model:

EMP = β0 + β1TIME + β2STATE + β3(TIME × STATE) + ϵ (9.5)

then b3 is the DiD estimator!

• Other “X” variables can be added to the model.
• TIME × STATE is an interaction term.
• β1 is the difference in EMP over TIME, for the no treatment group.
• β2 is the difference in EMP between the two states, at TIME = 0.
• β3 is the difference in the effect of TIME between the two states: the difference-in-difference.

Table 9.3: To find the interpretation of β3, we can “plug” in the four possible combinations for the
dummy variables into model 9.5.

TIME = 0 TIME = 1 Difference
Pennsylvania

STATE = 0 β0 β0 + β1 β1
(no treatment)

New Jersey
STATE = 1 β0 + β2 β0 + β1 + β2 + β3 β1 + β3
(treatment)
Difference β2 β2 + β3 β3

From Table 9.3 notice that:

• Difference over time for the no treatment group: β1
• Difference over time for the treatment group: β1 + β3
• The difference-in-difference (DiD): (β1 + β3) − β1 = β3

Finally, to estimate model 9.5 using LS and get the DiD estimator in R, we can use:
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Figure 9.8: Average employment before and after the minimum wage increase, by state. The DiD
estimator is also the LS estimator b3 from equation 9.5.

summary(lm(EMP ~ TIME + STATE + I(TIME * STATE), data = did))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 23.380 1.098 21.288 <2e -16 ***
TIME -2.283 1.553 -1.470 0.1419
STATE -2.949 1.224 -2.409 0.0162 *
I(TIME * STATE) 2.750 1.731 1.588 0.1126
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.511 on 764 degrees of freedom
Multiple R- squared : 0.007587 , Adjusted R- squared : 0.00369
F- statistic : 1.947 on 3 and 764 DF , p-value: 0.1206

The DiD estimate is 2.75.

9.5 Review Questions
1. Describe the usefulness of interaction terms.
2. Using the CPS data, determine if there is a different effect of education on wage, between men

and women.
3. Winnipeg is the so-called “Slurpee capital of the world”. In the year 2028, sky-rocketing diabetes

rates has led the city to impose a Slurpee tax, in the hopes of reducing consumption. In August
2027, Slurpee consumption in 45 different 7-11 stores is recorded. The Slurpee tax happens in
January 2028, and Slurpee consumption for the same 45 stores is recorded again in August 2028.
Slurpee consumption for a “control” group is also recorded. Slurpee consumption for Edmonton
in 45 different 7-11 stores is recorded for both August 2027 and August 2028, but there was no
Slurpee tax in Edmonton. Download the dataset:

dat <- read.csv("https://rtgodwin.com/data/slurpee.csv")

The variables in the data are:
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Variable Description
slurpee the number of Slurpees sold in a store over the month

time = 1 if after the Slurpee tax (August 2028)
= 0 if before the Slurpee tax (August 2027)

winnipeg = 1 if in Winnipeg (treatment group)
= 0 if in Edmonton (no-treatment group)

a) What is the difference in average Slurpee consumption in Winnipeg, before and after the
tax?

b) Did the tax cause this increase in Slurpee consumption?
c) What is the “fundamental problem of causal inference”?
d) What is a “counterfactual”?
e) What is the difference in Slurpee consumption in Edmonton, over the year?
f) What is the “parallel trends” assumption?
g) What is the average amount of Slurpees that would have been sold in Winnipeg, if there had

been no Slurpee tax?
h) What is the estimated difference-in-difference (DiD)?
i) Fill out all of the averages and differences in a table, similar to Table 9.4.
j) Use least-squares and an interaction term to get the DiD estimate.
k) Sketch Slurpee consumption for both cities, before and after the tax. Sketch the counterfac-

tual Slurpee consumption, and label the estimated DiD.

9.6 Answers
1. Interaction terms are useful when we want to allow the effect of X on Y to depend on a different

X variable. When one variable in the interaction term is a continuous variable, and the other is
a dummy, the interaction term allows for a different marginal effect for the two different groups
(as defined by the dummy).
When both variables in the interaction term are dummies, we are able to estimate a “difference-in-
difference”. In both cases, interaction terms allow us to estimate, and test for, differences between
groups.

2. Load the CPS data:

cps <- read.csv("http://rtgodwin.com/data/cps1985.csv")

We’ll introduce an interaction term into our population model:

log wage = β0 + β1education + β2female + β3age + β4experience

+ β5education × female + ϵ

To estimate this model in R, we can use:

summary(lm(log(wage) ~ education + gender + age + experience
+ gender*education, data = cps))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.23263 0.69231 1.780 0.075576 .
education 0.14950 0.11402 1.311 0.190364
genderfemale -0.69499 0.20315 -3.421 0.000672 ***
age -0.06472 0.11345 -0.570 0.568616
experience 0.07754 0.11355 0.683 0.494959
education : genderfemale 0.03362 0.01531 2.196 0.028545 *
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The estimated difference is that an additional year of education increases wages by 3.36% more for
women than for men (note that the dependent variable is log wage. To test to see if this difference
is insignificant we test the null hypothesis that the coefficient on the interaction term is equal to
zero (H0 : β5 = 0). R has already performed this test for us: the associated p-value is 0.0286. We
reject the null hypothesis that there are no differences in the effect of education on wages between
men and women, at the 5% significance level.

3. a) What is the difference in average Slurpee consumption in Winnipeg, before and after the
tax?

We need to subtract average slurpee in Winnipeg at time = 0 from the average at time =
1:

mean(dat$slurpee[dat$time==1 & dat$winnipeg==1]
) - mean(dat$slurpee[dat$time==0 & dat$winnipeg==1])

[1] 616.2

Slurpee consumption increased by 616.2 on average, even after the tax was introduced!

b) Did the tax cause this increase in Slurpee consumption?

We cannot say that the tax caused this difference in Slurpee consumption, because other
things that effect Slurpee consumption may have happened over time. We would need to
know what Slurpee consumption would have been in August 2028 if there had been no tax,
to estimate the causal effect of the tax. Unless Slurpee consumption would have been the
same in August 2028 without the tax, as it was in 2027, we cannot call the difference in part
(a) the causal effect.

c) Explain the “fundamental problem of causal inference” using this example.

The fundamental problem of causal inference is that we cannot observe Slurpee consumption
in Winnipeg under both “treatment” and “no treatment”. We cannot observe what would
have happened in Winnipeg in 2028 if there had been no tax. Observing the causal effect of
the tax is impossible.

d) What is the “counterfactual” that we need to estimate the causal effect of the tax?

We observe what happens in Winnipeg after the tax (these are facts). We need to imagine,
or predict, what would have happened in Winnipeg if there had been no tax. This is called
a “counterfactual”. Comparing the two outcomes estimates the causal effect.

e) What is the difference in Slurpee consumption in Edmonton, over the year?

Similar to before:

mean(dat$slurpee[dat$time==1 & dat$winnipeg==0]
) - mean(dat$slurpee[dat$time==0 & dat$winnipeg==0])

[1] 1225.956

Slurpee consumption increased by a lot!
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f) What is the “parallel trends” assumption?

The “parallel trends” assumption is where we assume that the trend observed in the “no
treatment” group is the same trend that we would have observed in the “treatment” group,
if they hadn’t been treated. In this example, we will assume that the Slurpee market in
Edmonton is faces a similar situation to Winnipeg, over the year period. We assume that
the increase in Slurpee consumption in Edmonton is the same that would have happened in
Edmonton, if there had been no tax.

g) What is the average amount of Slurpees that would have been sold in Winnipeg, if there had
been no Slurpee tax?

Using the parallel trends assumption, we can predict that Winnipeg’s Slurpee consumption
would have also increased by 1225.956 on average.

h) What is the estimated difference-in-difference (DiD)?

We take the difference between Winnipeg’s difference in average Slurpee consumption, and
Edmonton’s difference in average Slurpee consumption.

616.2 − 1225.956 = −609.756

This is the estimated effect of the tax! Slurpee consumption decreased by 609.756 on average
in August 2028, compared to what it would have been in the absence of the tax.

i) Fill out all of the averages and differences in a table, similar to Table 9.4.

Table 9.4: Average Slurpee consumption in Winnipeg and Edmonton, before and after a tax in Winnipeg.
time = 0 time = 1 Difference

Edmonton
winnipeg = 0 4103.089 5329.044 1225.956
(no-treatment)

Winnipeg
winnipeg = 1 4206.844 4823.044 616.2
(treatment)
Difference 103.755 -506 -609.756

j) Use least-squares and an interaction term to get the DiD estimate.

We can estimate a model that uses an interaction term in order to get the DiD estimator:

slurpee = β0 + β1winnipeg + β2time + β3(winnipeg × time) + ϵ

In R:

summary(lm(slurpee ~ winnipeg + time + winnipeg*time, data = dat))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 4103.09 11.18 367.092 < 2e -16 ***
winnipeg 103.76 15.81 6.564 5.67e -10 ***
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time 1225.96 15.81 77.557 < 2e -16 ***
winnipeg :time -609.76 22.35 -27.277 < 2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 74.98 on 176 degrees of freedom
Multiple R- squared : 0.9781 , Adjusted R- squared : 0.9777
F- statistic : 2620 on 3 and 176 DF , p-value: < 2.2e -16

The DiD estimator is -609.76.

k) Sketch Slurpee consumption for both cities, before and after the tax. Sketch the counterfac-
tual Slurpee consumption, and label the estimated DiD.

Figure 9.9: Average Slurpee consumption in Winnipeg and Edmonton.



Chapter 10

Heteroskedasticity

The estimators that we have used so far have good statistical properties provided that the following
assumptions hold:

A1 The population model is linear in the βs.
A2 There is no perfect multicollinearity between the X variables.
A3 The random error term, ϵ, has mean zero.
A4 ϵ is identically and independently distributed.
A5 ϵ and X are independent.
A6 ϵ is Normally distributed.

These assumptions ensure that OLS is unbiased, efficient, and consistent, and that hypothesis testing
is valid. A violation of one or more of these assumptions might lead us to estimators beyond OLS. OLS
is simple, and easy to use, but is often thought of a starting point in econometric modelling since the
above assumptions are often unreasonable.

In this section, we will consider that assumption A4 is violated in a particular way. Specifically, we
consider what happens where the error term, ϵ, is not identically distributed.

10.1 Homoskedasticity
If assumption A4 is satisfied, then ϵ is identically distributed. This means that all of the ϵi have the same
variance. That is, all of the random effects that determine Y , outside of X, have the same dispersion.
The term homoskedasticity (same dispersion) refers to this situation of identically distributed error
terms.

Stated mathematically, homoskedasticity means:

Var[ϵi|Xi] = σ2 , ∀i

The variance of ϵ is constant, even conditional on knowing the value of X.
Homoskedasticity means that the squared vertical distance of each data point from the (population

or estimated) line is, on average, the same. The values of the X variables do not influence this distance
(the variance of the random unobservable effects are not determined by any of the values of X). See
figure 10.2.

10.2 Heteroskedasticity
Heteroskedasticity refers to the situation where the variance of the error term ϵ is not equal for all
observations. The term heteroskedasticity means differing dispersion. Mathematically:

Var[ϵi|Xi] ̸= σ2 , ∀i
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Figure 10.1: Possible heteroskedasticity in the CPS data. The variance in wage may be increasing
as education increases. The reasoning is that individuals who have not completed highschool (or
university) are precluded from many high-paying jobs (doctors, lawyers, etc.). However, having many
years of education does not preclude individuals from low-paying jobs. The spread in wages is higher
for highly educated individuals.
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Figure 10.2: Homoskedasticity. The average squared vertical distance from the data points to the OLS
estimated line is the same, regardless of the value of X.
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Figure 10.3: Heteroskedasticity. The squared vertical distance of a data point from the OLS estimated
line is influenced by X.
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or

Var[ϵi|Xi] = σ2
i

Each observation can have its own variance, and the value of X may influence this variance.
Heteroskedasticity means that the squared vertical distance of each data point from the estimated

regression line is not the same on average, and may be influenced by one or more of the X variables.
See figure 10.3, where the larger the value of X is, the larger the variance of ϵ.

10.2.1 The implications of heteroskedasticity
Heteroskedasticity is a violation of A.4, since each ϵi is not identically distributed. Heteroskedasticity
has two main implications for the estimation procedures we have been using in this book:

(i) The OLS estimator is no longer efficient.
(ii) The estimated standard errors are inconsistent.

The inefficency of OLS is arguably a smaller problem than the inconsistency of the variance estima-
tor. (ii) means that the estimated standard errors in our regression output are wrong, leading to the
incorrect t-statistics and confidence intervals. Hypothesis testing, in general, is invalid. The problem
arises because the formula that is the basis for estimating the standard errors in OLS (equation 5.7):

Var [b1] = σ2
ϵ∑

X2
i − (

∑
Xi)2

n

is only correct under homoskedasticity.

10.2.2 Fixing heteroskedasticity - robust standard errors
To fix problem (i), the inefficiency of OLS, we must use a different estimator, such as Generalized Least
Squares (GLS). GLS is not discussed here. To fix (ii), the more important problem of the inconsistency
of the standard errors, the formula for Var [b1] must be updated to take into account the possibility of
heteroskedasticity.

Updating the formula to allow for heteroskedasticity in the estimation of the standard errors gives
what is typically referred to as robust standard errors. In R, we will use the code:
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install.packages("sandwich")
library(sandwich)
install.packages("lmtest")
library(lmtest)

to install and load a package that can estimate the robust standard errors, and then use

coeftest(my.lm.model, vcov = vcovHC(my.lm.model, "HC1"))

to estimate the correct standard errors and updated t-statistcs and p-values, where my.lm.model is the
least-squares regression that we have estimated using the lm() command.

10.2.3 Testing for heteroskedasticity
There are several (approximately) equivalent tests for heteroskedasticity, but we’ll focus on the most
famous: White’s1 test.

In White’s test, the null hypothesis is that there is homoskedasticity, and the alternative is het-
eroskedasticity. That is:

H0 : var[ϵi] = σ2

HA : var[ϵi] ̸= σ2

Take a simple population model with two regressors. Remember that the population model and the
estimated model are (respectively):

y = β0 + β1x1 + β2x2 + ϵ

y = b0 + b1x1 + b2x2 + e

The residual e is the counterpart to the unobservable error term ϵ! Sometimes, we can use the residuals
to test assumptions or properties of the error term. For example, we can look to see if the residuals are
homoskedastic or heteroskedastic, in order to infer those propertied about the error term. That is, if e
looks homoskedastic, we will conclude that so is ϵ.

White’s test tries to explain differences in the size of the squared residuals from a least-squares model
by regressing them on the original x variables, and the squares and cross products of the x. If the R2

from this regression is high, then we conclude that there is some pattern to the size of the residuals,
and reject the null hypothesis of homoskedasticity.

To test for heteroskedasticity in the population model:

y = β0 + β1x1 + β2x2 + ϵ

we would estimate it by LS, for example by using lm(y ˜ x1 + x2). We then get the squared residuals
from this regression, and estimate the following equation by LS:

e2 = β0 + β1x1 + β2x2 + β3(x1 × x2) + β4x2
1 + β5x2

2 + ε (10.1)

Equation 10.1 is looking for any approximate way to explain variation in the size of the squared residuals.
If the estimated model from equation 10.1 fits well (in terms of the R-squared), then there is some
explanation for the variance in the error term, and the error term is heteroskedastic. White’s test
statistic is the nR2 from this auxiliary regression, and the p-value for the test comes from the Chi-
square distribution. As usual, if the p-value is small, we reject the null of homoskedasticity, in favour
of heteroskedasticity.

To test for heteroskedasticity in R, we need to install and load a package:
1White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.
Econometrica: journal of the Econometric Society, 817-838.
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install.packages("skedastic")
library(skedastic)

and then use:

white(my.lm.model, interactions = TRUE)

where my.lm.model is the model we have estimated by LS. If we find heteroskedasticity, then we need
to use heteroskedastic robust standard errors (such as White’s standard errors).

10.2.4 Heteroskedasticity in food expenditure data
Download a data set on food expenditure by country, in 2016:

food <- read.csv("https://rtgodwin.com/data/foodexp.csv")

The variables are foodexp - food expenditure per capita (in US dollars), and GDPpercap - GDP per
capita. There are 84 countries in the sample. Plot the data, taking the log of GDP per capita (see
Figure 10.4):

plot(log(food$GDPpercap), food$foodexp, pch=16, xlab="log(GDP per capita)",
ylab="Food expenditure per capita")

Figure 10.4: Food expenditure and log GDP per capita.

Estimate the population model
The following model for food expenditure:

foodexp = β0 + β1 log(GDPpercap) + ϵ

can be estimated in R using:

food.mod <- lm(foodexp ~ log(GDPpercap), data=food)
summary(food.mod)
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Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -4737.68 451.38 -10.50 <2e -16 ***
log( GDPpercap ) 677.40 47.81 14.17 <2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 479 on 82 degrees of freedom
Multiple R- squared : 0.71 , Adjusted R- squared : 0.7065
F- statistic : 200.8 on 1 and 82 DF , p-value: < 2.2e -16

Test for heteroskedasticity
If heteroskedasticity is present in this data, then the standard errors, t-statistics, and p-values, are all
wrong! Hypothesis testing, and any conclusions we draw, may be incorrect due to the heteroskedasticity.
To test for heteroskedasticity, we can use White’s test:

install.packages("skedastic")
library(skedastic)
white(food.mod)

statistic p.value parameter method alternative
<dbl > <dbl > <dbl > <chr > <chr >

1 11.6 0.00304 2 White ’s Test greater

The test statistic from the White test is 11.6, with an associated p-value of 0.00304. We reject the null
hypothesis of homoskedasticity. To see what the function white() is doing, we’ll calculate the White
test statistic and p-value “by hand”:

food.resid.sq <- food.mod$residuals ^ 2
summary(lm(food.resid.sq ~ log(GDPpercap) + I(log(GDPpercap) ^ 2), data=food))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 4703163 3680579 1.278 0.205
log( GDPpercap ) -1121179 795218 -1.410 0.162
I(log( GDPpercap )^2) 67703 42508 1.593 0.115

Residual standard error: 444800 on 81 degrees of freedom
Multiple R- squared : 0.138 , Adjusted R- squared : 0.1167
F- statistic : 6.485 on 2 and 81 DF , p-value: 0.002442

The test statistic is nR2 = 84 × 0.138 = 11.6 (same as from the white() command). The p-value can
be found from:

1 - pchisq(84 * 0.138, 2)

0.003039689

which is the same from the white() command.

White’s heteroskedastic consistent standard errors
To recalculate the standard errors, t-statistics, and p-values, we can use the coeftest() function:

install.packages("sandwich")
library(sandwich)
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install.packages("lmtest")
library(lmtest)
coeftest(food.mod, vcov = vcovHC(food.mod, "HC1"))

t test of coefficients :

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -4737.680 476.516 -9.9423 9.705e -16 ***
log( GDPpercap ) 677.399 54.069 12.5284 < 2.2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice that the estimated βs have not changed, but that the standard errors have changed, t-statistics,
and p-values have changed.

Heteroskedastic errors have a pretty severe consequence; hypothesis testing may be invalid. The
prevalence of heteroskedasticity in many economics data has led to the common practice of erring
on the side of caution. Heteroskedastic robust standard errors are often used, if heteroskedasticity is
suspected. Note that homoskedasticity is a special case of heteroskedasticity, so the downside of using
the robust estimator when it is not needed, is small.

10.3 Review Questions
1. Explain the difference between homoskedasticity and heteroskedasticity.

Answer. Under homoskedasticity, the variance of the error term is constant. Under heteroskedas-
ticity, the variance of the error term can differ by observation, and can depend on the x variables,
or on other variables. To state the difference mathematically, see Sections 10.1 and 10.2.

2. Provide an example of heteroskedasticity using data from another chapter.
Answer. There are many examples throughout the book (heteroskedasticity is quite common).
You could use White’s test on any of the models that we have estimated, or you can point out how
the data in a scatterplot seems to be differently dispersed depending on the value of the x-axis.

3. Describe the problem that heteroskedasticity brings to LS estimation.
Answer. If we assume that the errors are homoskedastic, when they are actually heteroskedastic,
the estimators for the standard errors of the b are biased and inconsistent. This means that
t-statistics, p-values, confidence intervals, will be wrong, and hypothesis testing in general will
be invalid. The usual computer output from the summary() command will be wrong (but the b
themselves are unaffected). As a side note, the LS estimator is inefficient under heteroskedasticity,
but it is still unbiased and consistent.

4. Briefly explain how to fix the inconsistency of the standard errors in LS estimation, in the presence
of heteroskedasticity.
Answer. We can use robust standard errors. We can update the formula for the variance of b, in
order to take account of heteroskedasticity. This gives us a consistent estimator for the standard
errors.

5. Explain the basic idea behind testing for heteroskedasticity. What are the null and alternative
hypotheses?
Answer. The null hypothesis is homoskedasticity, and the alternative is heteroskedasticity. The
strategy is to estimate the model as usual. Get the residuals. Then do an auxiliary (extra)
regression, using the squared residuals as the y variables, and all the x variables, their squares,
and their cross products, as regressors. If the R2 from this extra regression is high enough, that
means that the size of the residuals can be explained using x, and the null is rejected.
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Instrumental Variables

For least-squares to work well, we need to make a very important assumption about the error term ϵ.

The error term ϵ must be independent from the x variables, or else least-squares is biased and incon-
sistent.

For example, in the simple model:

y = β0 + β1x + ϵ,

if x is correlated with ϵ then the least-squares estimator for β1 will be wrong (biased and inconsistent)!

11.1 Missing, lurking, or confounding variables
The error term contains missing variables, that determine y. So, those missing variables need to be
uncorrelated with the x variables for LS to work. This is often unreasonable!

A lurking, or confounding variable is one that threatens our ability to correctly estimate the effect
that an x variable has on a y variable. Confounding variables are a major issue in analyses of causal
inference, and are of tremendous import in many areas, not just economics.

Figure 11.1: A missing m variable that is correlated with x and that determines y will make estimation
of the effect of x on y difficult (or impossible).

The situation depicted in Figure 11.1, where m is correlated with both x and y, implies that the effect
of x on y cannot be estimated correctly by LS. That is, the estimated β1 (b1) is wrong in the population
model:

y = β0 + β1x + ϵ

The reason that b1 gives the wrong answer for the true effect of x on y is that:

• A change in m is associated with a change in both x and y.
• When we “see” x changing, we know m is also changing.
• Attributing changes in y due to changes in x alone becomes impossible, since we don’t know how

much of the change in y came from m.
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The solution to the problem is to include the m variable in the model! If we can’t actually observe m
(but we can imagine that it is there) then we must use clever strategies and more advanced methods to
attempt to estimate the effect of x on y. One of those possible methods is Instrumental Variables (IV)
estimation, the focus of this chapter.

11.1.1 House price again
Let’s return to the house price data:

house <- read.csv("https://rtgodwin.com/data/houseprice.csv")
bad.mod <- lm(Price ~ Fireplaces, data=house)
summary(bad.mod)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 171824 3234 53.13 <2e -16 ***
Fireplaces 66699 3947 16.90 <2e -16 ***

This model is suffering from omitted variable bias. The estimated effect of an additional fireplace on
house price is wrong (biased and inconsistent). $67,000 is likely not the true effect. This is because
there is a missing variable Living.Area (the size of the house in square feet), that is correlated with
fireplaces and that also determines price. Notice that the missing variable is inside the error term (as
are all other variables that determine y), but that this missing variable is correlated with x. This means
that ϵ and x are correlated, and that least-squares will be biased and inconsistent.

Once we include the missing variable Living.Area, the problem is solved:

better.mod <- lm(Price ~ Fireplaces + Living.Area, data=house)
summary(better.mod)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 14730.146 5007.563 2.942 0.00331 **
Fireplaces 8962.440 3389.656 2.644 0.00827 **
Living .Area 109.313 3.041 35.951 < 2e -16 ***

But what if we can’t include the missing variable, because we don’t observe it? All hope is not lost. If
we can find an instrument, then we can still get a consistent estimator for the β.

11.1.2 Endogeneity
• When an x variable is correlated with the error term, that variable is sometimes said to be

endogenous.
• Simultaneous causality (or just “simultaneity”) is another way that we can have endogeneity.

We will soon see that this is the case with demand and supply.

11.2 Instrumental variable (IV)
A variable, z, qualifies as an instrument if it satisfies two conditions.

An instrumental variable, z, must be:

1. Correlated with the endogenous variable x.
• This is sometimes called the “relevance” of an IV.
• This condition can be tested.
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2. Uncorrelated with the error term, or equivalently, uncorrelated with the missing variable m.
• This is sometimes called the “exclusion” restriction.
• This restriction cannot be easily tested.

If we can find a valid instrument, then we can use it to extract the “good” or “clean” variation from x.
With endogeneity, changes in x are associated with changes in ϵ. But, changes in x due to z are not
associated with the error term, because z is not correlated with ϵ.

11.3 IV estimation / Two-stage least-squares (2SLS)
Instrumental variables estimation, also called two-stage least-squares, is a statistical method for esti-
mating β1 in the equation:

y = β0 + β1x + ϵ,

when x is endogenous (correlated to ϵ), but when we have a valid instrument z. The IV estimation
gives us a consistent estimator for β1, whereas LS gives us an inconsistent estimator and should not be
used.

11.3.1 1st stage of 2SLS
In the first stage, we estimate an auxiliary regression to extract variation from x which is independent
from ϵ. The 1st stage regression model is:

x = α0 + α1z + u (11.1)

After estimating this model by least-squares, we have the estimates α̂0 and α̂1. We then use this model
to get the least-square predictions for x:

x̂ = α̂0 + α̂1z (11.2)

The LS predicted values x̂ from equation 11.2 are independent from the error term! That is, x̂ contains
changes in x that are due to z only, and since z is uncorrelated with ϵ, so is x̂ uncorrelated with ϵ.

11.3.2 2nd stage of 2SLS
In the second stage, we estimate the population model by LS, but instead of using x, we replace it with
x̂ from the 1st stage. Although x is endogenous, x̂ is not! Estimating the following equation by LS
gives us the IV estimator:

y = β0 + β1x̂ + ϵ

11.3.3 Direct formula for the IV/2SLS estimator
For the model y = β0 + β1x + ϵ, recall that the formulas for the LS estimators are:

b1 =
∑

[(y − ȳ) (x − x̄)]∑
(x − x̄)2

b0 = ȳ − b1x̄

Applying these formulas to the 1st stage regression in equation 11.1, the formulas look like:

α̂1 =
∑

[(x − x̄) (z − z̄)]∑
(z − z̄)2

α̂0 = x̄ − α̂1z̄
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The LS predicted values from the 1st stage are:

x̂ = α̂0 + α̂1z = x̄ −
∑

[(x − x̄) (z − z̄)]∑
(z − z̄)2 z̄ +

∑
[(x − x̄) (z − z̄)]∑

(z − z̄)2 z (11.3)

and the LS slope estimator for the model in the 2nd stage is:

b1 =
∑[

(y − ȳ)
(
x̂ − ¯̂x

)]
∑(

x̂ − ¯̂x
)2 (11.4)

Plugging the predicted values (equation 11.3) into the 2nd stage estimator in equation 11.4) yields the
formula for the IV estimator:

β̂IV =
∑

[(y − ȳ) (z − z̄)]∑
[(x − x̄) (z − z̄)] (11.5)

11.4 Example of a missing variable: Distance from college
Let’s look at data from Card (1993).1

• Data contains wage, years of education, and demographic variables.
• Goal: estimate the returns to education in terms of wage.
• Problem: ability (intelligence) may be correlated with (cause) both wage and education.
• Since ability is unobservable (a missing variable), it is contained in the error term.
• The education variable is then correlated with the error term (endogenous).
• LS estimation of the returns to education may be inconsistent.

The population model that we want to estimate is:

wage = β0 + β1education + β2urban + β3gender + β4ethnicity + β5unemp + ϵ (11.6)

We are primarily interested in β1 (the returns to education). The other variables are included as controls,
in order to avoid omitted variable bias. The difficulty with estimating equation 11.7 is that education
is endogenous. From the Card (1993) paper:

One of the most important “facts” about the labor market is that better-educated workers earn higher
wages. Hundreds of studies in virtually every country show earnings gains of 5-15 percent (or more)
per additional year of schooling. Despite this evidence, most analysts are reluctant to interpret the
earnings gap between more and less educated workers as a reliable estimate of the economic return to
schooling. Education levels are not randomly assigned across the population; rather, individuals make
their own schooling choices. Depending on how these choices are made, measured earnings differences
between workers with different levels of schooling may over-state or under-state the “true” return to
education.

11.4.1 LS is the wrong method
First, let’s try LS. It is the wrong method to use because it is inconsistent when there is endogeneity.
Load the data, and estimate the model:

1Card, D. (1993). Using geographic variation in college proximity to estimate the return to schooling (No. w4483). National
Bureau of Economic Research.
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college <- read.csv("https://rtgodwin.com/data/collegedist.csv")
ls <- lm(wage ~ education + urban + gender + ethnicity + unemp, data = college)
summary(ls)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 8.000192 0.156928 50.980 <2e -16 ***
education 0.005369 0.010362 0.518 0.6044
urbanyes 0.070117 0.044727 1.568 0.1170
gendermale 0.085242 0.037069 2.300 0.0215 *
ethnicityhispanic 0.012048 0.062385 0.193 0.8469
ethnicityother 0.556056 0.052167 10.659 <2e -16 ***
unemp 0.133101 0.006711 19.834 <2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.268 on 4732 degrees of freedom
Multiple R- squared : 0.1098 , Adjusted R- squared : 0.1087
F- statistic : 97.27 on 6 and 4732 DF , p-value: < 2.2e -16

Notice that the returns to education are estimated to be very small (an additional year of education
leads to an increase in wage of half of a cent per hour). No point in going to school! But we know that
LS is wrong (inconsistent) if education is correlated with the error term.

11.4.2 2SLS using distance from college as an IV
Now let’s try using distance from college (while attending high school) as an instrument for education.
The argument for the validity of this instrument is that:

• distance from college is correlated with education, since the closer a student is, the cheaper it is
to get an education

• distance from college is uncorrelated with the missing variables that simultaneously determine
education and wage

1st stage
To use this distance from college variable in two-stage least-squares, we first regress education (the
problem endogenous variable) on distance from college and all the controls. Then we save the LS
predicted values from this regression:

first.stage <- lm(education ~ urban + gender + ethnicity + unemp + distance,
data = college)

education.hat <- first.stage$fitted.values

2nd stage
Now, we estimate the original population model in equation 11.7 using LS, but we replace the education

variable with 1st stage predicted values ̂education. That is, we estimate the equation:

wage = β0 + β1 ̂education + β2urban + β3gender + β4ethnicity + β5unemp + ϵ (11.7)

The R code is:

iv <- lm(wage ~ education.hat + urban + gender + ethnicity + unemp,
data = college)

summary(iv)
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Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.657025 1.358890 -0.484 0.62876
education .hat 0.647099 0.100592 6.433 1.38e -10 ***
urbanyes 0.046144 0.044691 1.033 0.30188
gendermale 0.070753 0.036978 1.913 0.05576 .
ethnicityhispanic -0.124051 0.065641 -1.890 0.05884 .
ethnicityother 0.227240 0.072984 3.114 0.00186 **
unemp 0.139163 0.006748 20.622 < 2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.263 on 4732 degrees of freedom
Multiple R- squared : 0.1175 , Adjusted R- squared : 0.1163
F- statistic : 105 on 6 and 4732 DF , p-value: < 2.2e -16

The return to education is now positive and significant!

Under LS the estimated returns to education are 0.005, but under IV they are 0.647.

11.4.3 Using the direct formula: ivreg()
We can use a direct formula like in equation 11.5 to get the IV estimates (instead of using the two-stage
approach). Install and load the ivreg package:

install.packages("ivreg")
library(ivreg)

We need to give the ivreg() function:

• the population model that we want to estimate
• the list of instruments that we will use

The population model and list of instruments are separated by |:

iv <- ivreg(wage ~ education + urban + gender + ethnicity + unemp |
distance + urban + gender + ethnicity + unemp,

data = college)
summary(iv)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.65702 1.83641 -0.358 0.7205
education 0.64710 0.13594 4.760 1.99e -06 ***
urbanyes 0.04614 0.06039 0.764 0.4449
gendermale 0.07075 0.04997 1.416 0.1569
ethnicityhispanic -0.12405 0.08871 -1.398 0.1621
ethnicityother 0.22724 0.09863 2.304 0.0213 *
unemp 0.13916 0.00912 15.259 < 2e -16 ***

We get the same results as from using the two-stage method!

11.5 Estimating demand with IV
We have tried to estimate a demand curve several times in this course. We have been doing it wrong!
This is because the price variable that we have been using as a regressor (on the RHS of the model)
is endogenous! The price and quantity values that we observe in our data set are actually due to the
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Figure 11.2: Results of LS and IV (in red) regression using Card (1993) data. Dependent variable is
wage; distance from college is an instrument for education. Horizontal lines are 95% and 99% confidence
intervals. Notice that the returns to education are insignificant under LS, but significant under IV.
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intersection of demand and supply. The price and quantity values that we observe are due to two
equations, demand and supply:

q = α0 + α1p + α2s + ε (supply)
q = β0 + β1p + β2d + ϵ (demand) (11.8)

where:

• q is both quantity demanded and supplied
• p is price
• d are “demand-shifters” (such as income, prices of complements and substitutes, etc.)
• s are “supply-shifters” (such as prices of inputs, weather, etc.)
• α1 should be (+) and β1 should be (−)

The relationship between q and p is both positive and negative (depending on whether we look at the
supply or demand curve)! How can we fit a line through price and quantity data, and call it a demand
curve? We could be estimating the supply curve, or (most likely) a combination of the two. If we want
to estimate the slope of the demand curve, then we need to hold it’s position constant. That is, the
variation in price would have to come only from shifts in supply, so that we are tracing out points along
a demand curve. See figure 11.3.

The problem is, the demand curve is shifting along with the supply curve! The data that we observe
is the result of demand and supply intersecting. See figure 11.4.

To estimate the slope of the demand curve, we need to use variation in price that is due to shifts
of the supply curve only. To do this, we can use the supply-shifter variables as instruments for price!
In the first stage of 2SLS, we regress the price variable on the supply-shifter variables2, and get the LS
predicted values from this 1st stage regression ( ˆprice). These predicted values are changes in price due
to changes in supply only. In the 2nd stage, we estimate the demand equation, but we use ˆprice from
the 1st stage instead of just price.

2We also need to regress price on all of the variables in the demand equation as well.



11.5 Estimating demand with IV 130

Figure 11.3: In order to estimate the slope of the demand curve, variation in quantity and price must
come from shifts in supply.

11.5.1 Fulton fish market data
Graddy (1995) produces data on the Fulton fish market, and Angrist, Graddy, and Imbens (2000)
estimate the demand curve in this market using instrumental variables. The version of the data that
we use is from Wooldridge (2020). Download the data:

fish <- read.csv("https://rtgodwin.com/data/fish.csv")

Table 11.1: Description of some of the variables in the Graddy (1995) Fulton fish market data. We only
use a few variables for this example. In parentheses the variables are labeled as either demand-shifters
d or supply-shifters s.

totqty (q) quantity of fish sold that day
avgprc (p) price of fish that day

mon (d) dummy variable equal to 1 if it’s Monday
tues (d)
wed (d)

thurs (d)
wave2 (s) average max last 2 days wave height
wave3 (s) average max wave heights of 3 and 4 day lagged heights

The variables in the data set are shown in Table 11.1. Demand may change depending on the day: the
dummy variables are the demand-shifters. Supply is affected by the weather: if the sea is rough it is
harder to fish. Using the variables wave2 and wave3 as instruments for price, we can use variations
in price that are due to changes in supply only, in order to estimate the slope of the demand curve.
Graddy’s own description of the 2SLS approach:

...first a regression is run with log price as the dependent variable and the storminess of the weather as
the explanatory variable. This regression seeks to measure the variation in price that is attributable
to stormy weather. The coefficients from this regression are then used to predict log price on each day,
and these predicted values for price are inserted back into the regression.
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Figure 11.4: Price and quantity data is the result of the intersection of shifting demand and supply
curves. We cannot attribute changes in quantity due to changes in price as coming just from the demand
curve. Quantity and price are endogenous variables.

To estimate the demand equation:

log(totqty) = β0 + β1 log(avgprc) + β2mon + β3tues + β4wed + β5thurs + ϵ

using 2SLS/IV, we can use the R code:

install.packages("ivreg")
library(ivreg)
iv.fish <- ivreg(log(totqty) ~ log(avgprc) + mon + tues + wed + thurs |

wave2 + wave3 + mon + tues + wed + thurs,
data = fish)

summary(iv.fish)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 8.16410 0.18171 44.930 < 2e -16 ***
log( avgprc ) -0.81582 0.32744 -2.492 0.01453 *
mon -0.30744 0.22921 -1.341 0.18317
tues -0.68473 0.22599 -3.030 0.00318 **
wed -0.52061 0.22357 -2.329 0.02209 *
thurs 0.09476 0.22521 0.421 0.67492

Since the variables are in logs, we have estimated the elasticity of the demand curve: when price
increases by 1%, the quantity demanded is estimated to decrease by 0.81582%. Let’s compare this to
the LS estimates (as we would have done in previous chapters):

ls.fish <- lm(log(totqty) ~ log(avgprc) + mon + tues + wed + thurs,
data = fish)

summary(ls.fish)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 8.24432 0.16281 50.637 < 2e -16 ***
log( avgprc ) -0.52466 0.17611 -2.979 0.00371 **
mon -0.31093 0.22582 -1.377 0.17193
tues -0.68279 0.22267 -3.066 0.00285 **
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wed -0.53389 0.21994 -2.427 0.01717 *
thurs 0.06723 0.22042 0.305 0.76107

The LS estimate for the elasticity is much lower (0.52466%). The LS estimator is inconsistent because
price is an endogenous variable!

11.6 Review Questions
1. What is the missing variable problem?

Answer. When a variable that is both correlated to X and Y is omitted, we get omitted variable
bias. The solution is to include the omitted variable in the model. The missing variable problem
is similar, except that the missing variable cannot be included in the model (because it’s missing!).
When a variable that is correlated to both X and Y is missing, the least squares estimator for the
effect of X on Y will be biased and inconsistent.

2. What is the general goal of instrumental variable (IV) estimation?
Answer. The general goal of IV estimation is to solve the missing variable problem: obtain a
consistent estimator for the effect of X on Y when there is a missing variable that is correlated
to both X and Y .

3. What two properties must an instrumental variable have?
Answer. An instrument must be (i) uncorrelated with the missing variable, and (ii) correlated
with the “problem” X variable (the “problem” being the correlation with the missing variable).

4. What is two-stage-least-squares (2SLS)?
Answer. 2SLS is another name for “instrumental variables estimation”. It is the procedure for
using an instrumental variable to get a consistent estimators for the β in our models.

5. What is the 2SLS procedure?
Answer. In the first stage, the “problem” X variable is regressed on the instrument and other X
variables, and the LS predicted values from this regression are obtained (the X̂). In the second
stage, the X̂ are used in place of X in the population model.

6. Why does IV estimation work?
Answer. IV estimation works because the instrument, which is uncorrelated to the missing
variable, is used to predict the “problem” X variables. Those predicted values, X̂, are now
uncorrelated with the missing variable. Using X̂ instead of X gives an estimator that is consistent.
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