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Chapter 1

Introduction

1.1 This book
This book serves as the course notes for the introductory Econometrics graduate level course Econ 7010,
at the University of Manitoba. These notes are heavily influenced by those of David Giles. Econometric
Analysis by Greene, and Econometric Theory and Methods by Davidson and MacKinnon, are used as
companions to these notes.

This book tries to cover the standard topics covered in introductory graduate level courses, at least
in the U15 in Canada. The primary focus is on theory, with as much application as time allows. The
algebraic and statistical properties of least squares are first established under standard assumptions.
The

1.2 Objectives of this course
The primary objective is to cover the theory necessary to assess the merits of an econometric method
given a model and data. We begin be assessing the basic and popular least-squares method. Then, by
examining how the desirable properties of the least-squares method relies on various assumptions we
are led to more complicated and refined models. This serves as an exercise in econometric modelling.

• Learn mathematical tools necessary to examine and discuss econometric methods.
• Study some classic topics in econometrics such as heteroskedasticity and instrumental variables.
• Learn how to estimate, interpret, and test.
• Have basic proficiency with R.

1.3 R Statistical Environment and R Studio
The theory and concepts presented in this course will be illustrated by analysing several data sets. Data
analysis will be accomplished through the R Statistical Environment and RStudio. Both are free, and
R is fast becoming the best and most widely used statistical software.



Chapter 2

The R Programming Language

2.1 What is R?
R is a programming language designed to analyse data. R is free and open-source, with many user
contributed “add-on” packages that are readily downloadable by anyone. R is found in all areas of
academia that encounter data, and in many private and public organizations.

2.2 Where to get R
In this course we will use R and RStudio. Download and install R first: https://cran.r-project.org/
bin/windows/base/ (for Windows) or https://cran.r-project.org/bin/macosx/ (for Mac). Then,
download and install RStudio from https://www.rstudio.com/products/rstudio/download/.

2.3 Getting started with RStudio
2.3.1 Open RStudio

After you open RStudio it should look something like this:

2.3.2 Create a “script” file
A script file is a file where you can type and save your R computer code. To open a script file, click on
“File”, “New File”, “R Script”.

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/
https://www.rstudio.com/products/rstudio/download/
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• In the top left is your Script file. R commands can be run from the R Script file, and saved at
any time.

• In the bottom left is the Console window. Output is displayed here. R commands can be run
from the Console, but not saved.

• In the top right is the Environment. Data and variables will be visible here.
• The bottom right will display graphics (e.g. histograms and scatterplots).

2.3.3 Running R code
Copy and paste the following R code into the script window:
[]
print("Hello, World!")

Run the code by highlighting it, or making sure the cursor is active at the end of the line, and clicking
“Run” (you can also press Ctrl + Enter on PC or Cmd + Return on Mac).



2.4 Arithmetic in R 10

The output from the program is reproduced in the box below:

[1] "Hello , World!"

2.4 Arithmetic in R
R’s arithmetic operators include:

Operator Function

+ addition
- subtraction
* multiplication
/ division
^ exponentiation

Example 2.1 — Arithmetic in R. Use R to perform the following arithmetic operations:

1. 2 × 13
[]
2 * 13

[1] 26

2. 16/4

[]
16 / 4

[1] 4

3. 28

[]
2 ^ 8

[1] 256

4. 10+6
2

[]
(10 + 6) / 2

[1] 8

2.5 Create an object
You can create objects in R. Objects can be vectors, matrices, character strings, data frames, scalars
etc. Create two different scalars. Give them any name you like, but object names cannot start with a
number and cannot include certain characters like “!”:
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a <- 3
b <- 5

We have created two new objects called a and b, and have assigned them values using the assignment
operator <- (the “less than” symbol followed by the “minus” symbol). Notice that a and b pop up in
the top-right of your screen (the Environment window). We can now refer to these objects by name:

a * b

[1] 15

produces the output 15. To create a vector in R we use the “combine” function, c():

myvector <- c(1, 2, 4, 6, 7)

Notice that after creating it, the myvector object appears in the top-right Environment window.
myvector is just a list of numbers:

myvector =


1
2
4
6
7



2.6 Simple functions in R

Table 2.1: Simple R functions.
Function

sum()
mean()
var()
lm()

summary()

An R function takes an input, performs an operation, and then provides an output. Type the name
of the function and then type the input inside of parentheses: function.name(input). After we click
the “Run” button, we get the output. There are thousands of functions in R, a few simple ones are in
Table 2.1.

For example, to add up all of the numbers in myvector we would run:

sum(myvector)

[1] 20

which provides the output 20. We have asked the computer to add up an object by calling the function
sum(), and putting the name of the object myvector inside of the parentheses.
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2.7 Logical operators
Logical operators are used to determine whether something is TRUE or FALSE. Some logical operators
are:

Operator Function

> greater than
== equal to
< less than
>= greater than or equal to
<= less than or equal to
!= not equal to

Logical operators are useful for creating “subsamples” or “subsets” from our data. Using logical opera-
tors, we can calculate statistics separately for ethnicities, treatment group vs. control group, developed
vs. developing countries, etc. (we will see how to do this later). For now, let’s try some simple logical
operations. Try entering and running each of the following lines of code one by one:

8 > 4

[1] TRUE

b == 6

[1] FALSE

To check to see which elements in myvector are greater than 3 we use:

myvector > 3

[1] FALSE FALSE TRUE TRUE TRUE

2.7.1 Multiple logical operators
Sometimes we would like to create subsets in our data based on multiple conditions or characteristics.
For example, we might want to study a subset of our data consisting of only single or widowed women
with 1 child or more. The “and” / “or” operators are useful in these situations:

Operator Function

& “and”
| “or”

For example, the following line of code:

myvector > 3 & myvector < 7

[1] FALSE FALSE TRUE TRUE FALSE

checks to see whether each element in myvector is greater than 3 and less than 7.

2.8 Loading data into R
There are several ways to load data into R. In this course we work with comma-separated values file
format (CSV format).
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2.8.1 Directly from the internet
We can use the R code:

mydata <- read.csv("file location.csv")

We need to replace file location with the actual location of the file, either on the internet or on your
computer. We can also replace the name of the data set mydata with any name we like. For example,
to load data directly from the internet into R, try the following:

mars <- read.csv("http://ryantgodwin.com/data/mars.csv")

After running the above line of code, you should see the data set appear in the top-right of RStudio
(the environment pane).

2.8.2 From a location on your computer
After saving a .csv file to your computer, you can use the read.csv() command to load the file from
its location on your computer. For example:

mars <- read.csv("c:/data/mars.csv")

loads a file from the location c:/data/.

2.8.3 file.choose()
Using the file.choose() command will prompt you to select the file using file explorer:

mars <- read.csv(file.choose())

2.9 View your data in spreadsheet form
Click on the spreadsheet icon next to your mars data set, or run the following command:
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View(mars)

Note the uppercase V (R is case sensitive). This command allows you to view your data in spreadsheet
form. See Figure 2.1.

Figure 2.1: View your data in spreadsheet form.
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Basic Multiple Regression

A general population model is:

y = f (x1, x2, . . . , xk; θ) + ϵ (3.1)

• y is the dependent variable or “regressand”.
• x1, x2, . . . , xk are the explanatory variables or “regressors”.
• θ is a parameter vector.
• ϵ is the disturbance term or the random “error”.

Equations such as 3.1, although quite vague at this stage, are sometimes called the data generating
process. There is some mathematical process behind the scenes that is governing or creating the data
that we observe. A population model or data generating process1 mathematically states how the
variables are linked to one another in the physical world.

We’ll focus on population models where f is parametric and (usually) linear in the parameters. The
first estimation strategy that we’ll consider, Ordinary Least Squares, requires that the model be linear
in the parameters. In general, however, f may be:

• linear or non-linear in the variables
• linear or non-linear in the parameters
• parametric or non-parametric

Questions:

1. What is the role of the error term?
2. What is random, and what is deterministic?
3. What is observable, and what is unobservable?

3.1 Some classic population models in economics
These models are provided as examples of the general population model in equation 3.1. For each
model, try to determine the components of the model, and whether or not it is linear/non-linear in the
regressors/parameters. The background of these models are not of great importance to the course -
they are merely examples.

Keynes’ consumption function
C = β1 + β2Y + ϵ

1The terms “population model” and “data generating process” are mostly interchangeable.
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Cobb-Douglas production function
Y = AKβ2Lβ3eϵ

By taking logs, the Cobb-Douglas production function can be rewritten as:

log Y = β1 + β2 log K + β3 log L + ϵ

where β1 = log A.

Gravity model of trade
Tij = α0Y α1

i Y α2
j Dα3

ij ϵij

Mincer earnings equation
ln w = ln w0 + ρs + β1x + β2x2 + ϵ

CES production function
Y = φ (aKr + (1 − a)Lr)1/r eϵ

Taking logs, the CES production function is written as:

log Y = log φ + 1
r

log (aKr + (1 − a)Lr) + ϵ

3.2 Sample information
Suppose that we have a sample of n observations:

{yi; xi1, xi2, . . . , xik} ; i = 1, 2, . . . , n

i denotes an observation (individual, country, firm, etc.), and k is the number of variables in the model.
Assuming that the observed values are generated by the population model, and taking the case

where the model is linear in the parameters, Equation 3.1 becomes:

yi = β1xi1 + β2xi2 + · · · + βkxik + ϵi ; i = 1, . . . , n (3.2)

Recall that the βs and ϵ are unobservable. So, yi is generated by two components:

1. Deterministic component: Σk
j=1βjxij

2. Stochastic component: ϵi

To begin with, we will make the unrealistic assumption that the xij are non-random. Regardless of this
assumption, yi is a linear function of a random variable ϵ and so is itself random. The yi data that we
observe are “realized values” of a random variable.

Some typical objectives are to:

(i) Estimate unknown parameters of Equation 3.2.
(ii) Test hypotheses about the parameters.
(iii) Predict values of y outside of the sample.

https://en.wikipedia.org/wiki/Mincer_earnings_function
https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution
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3.3 Interpreting the parameters in a model
Once we estimate θ (e.g. all the βs), how do we interpret them? A major advantage of the linear
model is the ease in which the parameters may be interpreted. That is, the βs in equation 3.2 have an
important economics interpretation. For example:

∂yi

∂xi1
= β1

The parameters are the marginal effects of the x on y, with other factors held constant (ceteris paribus).
For example, from Keynes’ consumption function:

∂C

∂Y
= β2 = Marginal Propensity to Consume

We might wish to test the hypothesis that β2 = 0.9, for example.
Depending on how the population model is specified, however, the β might not be interpreted as

marginal effects. For example, after taking logs of the Cobb-Douglas production function in, we get the
following population model:

log Y = β1 + β2 log K + β3 log L + ϵ,

and

β2 = ∂ log Y

∂ log K
= ∂ log Y

∂Y
× ∂Y

∂K
× ∂K

∂ log K
= 1

Y
× ∂Y

∂K
× K = ∂Y/Y

∂K/K
,

so that β2 is the elasticity of output with respect to capital. The point is that we need to be careful
about how the parameters of the model are interpreted in all but the most simple of cases.

Questions:

1. How are the parameters interpreted in a log-linear model? For example:

log(yi) = β0 + β1xi1 + ... + ϵi

2. How are the parameters interpreted in a linear-log model? For example:

yi = β0 + β1 log(xi1) + ... + ϵi

So, we have a stochastic model that might be useful as a starting point to represent economics
relationships. We need to be especially careful about the way in which we specify both parts of the
model (the deterministic and stochastic parts).

3.4 Assumptions of the Classical Linear Regression Model
In this section, we are going to state six “classical” assumptions, and refer back to them frequently
throughout the course. These simplifying assumptions are a starting point, and are likely not satisfied
in real data. One of the main objectives of this course is to re-consider these assumptions - are they
realistic; can they be tested; what if they are wrong; can they be “relaxed”? When these assumptions
are violated, and we consider how to fix the resulting consequence, we will be led to different estimation
strategies, such as instrumental variables estimation or generalized least squares.

All “models” are simplifications of reality. Presumably we want our econometric model to be simple
but “realistic” – at least in the sense that we can identify our objective.

Traditionally the objective of most econometric models was to describe an economic process. As-
sumptions, such as the ones to follow, were to ensure the “quality” of the estimated economic model (we
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will soon measure quality in terms of unbiasedness, efficiency, and consistency). More recently, applied
econometrics has been focused on obtaining causal inference from observational data. The emphasis is
usually on estimating the marginal effect of just one of the x variables on y. From this perspective, the
following assumptions can in part be viewed as necessary for estimating a causal relationship between
x and y.

A.1: Linearity
The model is linear in the parameters:

yi = β1xi1 + β2xi2 + · · · + βkxik + ϵi

Linearity in the parameters allows the model to be written in matrix notation. Let,

y =

 y1
...

yn


(n × 1)

; β =

 β1
...

βk


(k × 1)

; X =


x11 x12 . . . x1k

x21 x22 . . . x2k
...

... . . . ...
xn1 xn2 . . . xnk


(n × k)

;

ϵ =

 ϵ1
...

ϵn


(n × 1)

Then, we can write the model, for the full sample, as:

y = Xβ + ϵ (3.3)

If we take the ith row (observation) of this model we have:

yi = xiβ + ϵi (scalar)

Notational points
• Vectors are in bold.
• The dimensions of vectors/matrices are written (rows × columns).
• The first subscript denotes the row, the second subscript the column.
• Some texts (including Greene, 2011), use the convention that vectors are columns. Hence, when

an observation (row) is extracted from the X matrix, it is transformed into a column. The above
equation would then be expressed as yi = x′

iβ + ϵi.

Question: Which of the equations in Section 3.1 are linear in the parameters? Which of these equations
can be “linearized”?

A.2: Full Rank
We assume that there are no exact linear dependencies among the columns of X (if there were, then
one or more regressor is redundant). Note that X is (n × k) and rank(X) = k. So we are also implicitly
assuming that n > k, since rank(A) ≤ min {#rows, #cols}. What does this assumption really mean?
Suppose we had:

yi = β1xi1 + β2 (2xi1) + ϵi

We can only identify, and estimate, the one function, (β1+2β2). In this model, rank(X) = k−1 = 1. An
example which is commonly found in undergraduate textbooks, of where A.2 is violated, is the dummy
variable trap.
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A.3: Errors have a zero mean
Assume that, in the population, E(ϵi) = 0 ; i = 1, 2, . . . , n. So,

E(ϵ) = E

 ϵ1
...

ϵn

 = 0

This is arguably the least important assumption.

A.4: Spherical errors
Assume that, in the population, the disturbances are generated by a process whose variance is constant
(σ2), and that these disturbances are uncorrelated with each other:

var (ϵi) = σ2; i = 1, 2, . . . , n (Homoskedasticity)
cov (ϵi, ϵj) = 0; ∀i ̸= j (no Autocorrelation)

Putting these assumptions together we can determine the form of the “covariance matrix” for the
random vector, ϵ.

V(ϵ) = E
[
(ϵ − E(ϵ))(ϵ − E(ϵ))′]

= E
[
ϵϵ′]

=

 E (ϵ1ϵ1) . . . E (ϵ1ϵn)
... . . . ...

E (ϵnϵ1) . . . E (ϵnϵn)


but...

E (ϵiϵi) = E
(
ϵ2
i

)
= E

[
(ϵi − 0)2

]
= var (ϵi) = σ2

and

E (ϵiϵj) = E [(ϵi − 0) (ϵj − 0)] = cov (ϵi, ϵj) = 0.

So:

V(ϵ) =

 σ2 . . . 0
... . . . ...
0 . . . σ2

 = σ2In

a scalar matrix.

A.5: Generating process for X

The classical regression model assumes that the regressors are “fixed in repeated samples” (laboratory
situation). We can assume this, but it is a very strong and unrealistic assumption for most economics
data.

Alternatively, allow X to be random, but restrict the form of their randomness: the process that
generates X must be unrelated to the process that generates ϵ in the population.

This is arguably the most important assumption. We will soon see that it is imperative that X and
ϵ are statistically independent. So, if X is random, we need to assume strict exogeneity:

E(ϵ|X) = E(ϵ) = 0 (3.4)

This says that ϵ and X are statistically independent. Statistical independence implies that X and ϵ are
uncorrelated (have zero covariance):

cov(xj , ϵ) = 0 ; for j = 1, . . . , k

Note that statistical independence implies zero correlation, but not necessarily the other way around.
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Prove that if X and ϵ are uncorrelated, and if E(ϵ) = 0, then:

E(X ′ϵ) = 0 (3.5)

A.6: Normality of errors
(ϵ|X) ∼ N

[
0, σ2In

]
This assumption is not as strong as it seems:

• often reasonable due to the Central Limit Theorem (C.L.T.)
• often not needed
• when some distributional assumption is needed, often a more general one is ok

Summary
The classical linear regression model is:

• y = Xβ + ϵ
• (ϵ|X) ∼ N

[
0, σ2In

]
• rank(X) = k
• The data generating process (DGP) of X and ϵ are unrelated

Implications for y (if X is non-random; or conditional on X):

E(y) = Xβ + E(ϵ) = Xβ

V(y) = V(ϵ) = σ2In

Because linear transformations of a Normal random variable are themselves Normal, we also have:

y ∼ N
[
Xβ, σ2In

]
In subsequent chapters, we will return to these assumptions, and ask:

• How reasonable are the assumptions associated with the classical linear regression model?
• How do these assumptions affect the estimation of the model’s parameters?
• How do these assumptions affect the way we test hypotheses about the model’s parameters?
• Which of these assumptions are used to establish the various results we’ll be concerned with?
• Which assumptions can be “relaxed” without affecting these results?

3.5 Least Squares Estimator
Our first task is to estimate the parameters of our population model:

y = Xβ + ϵ ; ϵ ∼ N
[
0, σ2In

]
Note that there are (k + 1) parameters, including σ2.

• There are many possible procedures for estimating parameters.
• Choice should be based mostly on the “sampling properties” of the resulting estimator (to be

considered later). Other considerations include computational convenience, and the ease of inter-
pretation of the estimated model.

• To begin with, we consider one possible estimation strategy – Least Squares.
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For the ith data-point, we have:

yi = x′
iβ + ϵi.

Given the assumptions in Section 3.4 regarding the error term, the expected value of yi conditional on
xi:

E
(
yi|x′

i

)
= x′

iβ.

We’ll estimate E (yi|x′
i) by

ŷi = x′
ib,

where ŷ is a least squares “predicted” or “fitted” value, and b is the vector of least squares estimates
for β. In the population, the true (unobserved) error disturbance is

ϵi = yi − x′
iβ.

When we use b to estimate β, there will be some “estimation error”, and the value,

ei = yi − x′
ib

will be called the ith “residual”. So,

yi =
(
x′

iβ + ϵi
)

=
(
x′

ib + ei
)

= (ŷi + ei)

Question: Which terms are unobserved (from the population) and which are observed (determined by
the sample)?

After the β have been estimated, we can write the y values as a sum of two components (the above
equation in matrix form):

y = ŷ + e

This says that the actual y values can be written as the sum of fitted (estimated or predicted) values
ŷ, and residuals (prediction error) e.

3.5.1 The Least Squares criterion
We will “choose b so as to minimize the sum of squared residuals”. That is, b is defined as from the
minimization problem:

Min(b)

n∑
i=1

e2
i

Before we proceed, let’s consider some questions:

1. Why squared residuals? If we did not square the residuals, positive “distances” could cancel out
negative ones.

2. Why not absolute values of residuals? This is valid, but leads to the Least Absolute Deviations
(LAD) estimator.

3. Why not use a “minimum distance” criterion? Why vertical instead of horizontal? The choice
of criterion seems quite arbitrary at this point, and is justified later in terms of the statistical
properties of the resulting estimator.
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3.5.2 Minimizing the sum of squared residuals: an optimization problem
We will solve a minimization problem using the least squares criterion in order to derive the “Least
Squares” estimator. The problem that we are trying to solve can be stated as:

Min(b)

n∑
i=1

e2
i ⇔ Min(b)

(
e′e
)

⇔ Min(b)
[
(y − Xb)′(y − Xb)

]
Now, let:

S = (y − Xb)′(y − Xb) = y′y − b′X ′y − y′Xb + b′X ′Xb

Note that:

b′X ′y = y′Xb

(1 × k)(k × n)(n × 1) = (1 × 1)

So,

S = y′y − 2
(
y′X

)
b + b′ (X ′X

)
b

Two rules involving the differentiation of vectors and matrices that we need are:

(i) ∂ (a′x) /∂x = a
(ii) ∂ (x′Ax) /∂x = 2Ax ; if A is symmetric

Applying these two results:

∂S/∂b = 0 − 2
(
y′X

)′ + 2
(
X ′X

)
b = 2

[
X ′Xb − X ′y

]
Set this to zero (for a turning point):

X ′Xb = X ′y

(k × n)(n × k)(k × 1) = (k × n)(n × 1)

This gives us k equations in k unknowns, sometimes called the “normal equations”. Finally, provided
that (X ′X)−1 exists:

b =
(
X ′X

)−1
X ′y (3.6)

Notice that X ′X is (k×k), and rank(X ′X) = rank(X) = k (by assumption). This implies that (X ′X)−1

exists. We need the “full rank” assumption for the Least Squares estimator, b, to exist. None of our
other assumptions have been used so far.

Check: have we minimized S?(
∂2S

∂b∂b′

)
= ∂

∂b′
[
2X ′Xb − 2X ′y

]
= 2

(
X ′X

)
; a (k × k) matrix

Note that X ′X is at least positive semi-definite:

η′ (X ′X
)

η = (Xη)′(Xη) =
(
u′u

)
=

n∑
i=1

u2
i ≥ 0

and so if X ′X has full rank, it will be positive-definite, not negative-definite.
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So, our assumption that X has full rank has two implications:

(i) The Least Squares estimator, b, exists.
(ii) Our optimization problem leads to the minimization of S, not its maximization!

3.5.3 Least Squares estimator in scalar form
For a population model with an intercept and a single regressor, you may have seen the following
formulas used in undergraduate textbooks:

b1 =
∑n

i=1 (xi − x) (yi − y)∑n
i=1 (xi − x)2 = sx,y

s2
x

b0 = y − b1x,

(3.7)

where sx,y is the sample covariance between x and y, and s2
x is the sample variance of x.

Questions: Why do population models typically include an intercept? How is the intercept included
in the population model when in matrix form (3.3)?

3.6 Method of Moments
The least squares criterion may seem dubious and unmotivated. We have yet to see the benefits of using
an estimator that minimizes the sum of squared residuals. Rather than starting from this seemingly
arbitrary criterion, we can instead derive the least squared estimator using the Method of Moments
(MM).

The Method of Moments relies on the principle that the sample mean is a good way of estimating a
population mean (we will see this later in the law of large numbers). The MM is widely used in statistics,
and many estimators in econometrics can be motivated using it or the closely related Generalized Method
of Moments.

Take the simple population model:

yi = β0 + β1xi + ϵi (3.8)

and take assumptions A.3 and A.5:

E[ϵi] = 0 ; E[xiϵi] = 0 (3.9)

That is, assumptions A.3 and A.5 imply two moment conditions, expressed in equation 3.9. By replacing
the expectations with sample averages, it can be seen that the MM estimator for the above population
model 3.8 is identical to that in equation 3.7.

Note that the population model 3.8 above can be generalized to include k regressors; A.3 will provide
one moment condition while A.5 will provide the remaining (k − 1) moment conditions necessary to
solve for the unknown β. The MM estimator, in matrix form, will be identical to equation 3.6.

3.7 Exercises
1. Let the y and X data be:

y =


1
4
5
4

 ; X =


1 2
1 4
1 6
1 8
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Figure 3.1: A simple data set with the estimated OLS line in blue. b0 is the OLS intercept, and b1 is
the OLS slope. The OLS residuals (ei) are the vertical distances between the actual data points (◦)
and the OLS predicted values (×).
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(a) Calculate the Least Squares estimators for β0 and β1 for the population model:

y = Xβ + ϵ

(b) Calculate the predicted values, and residuals, for the above data and model.
(c) Verify that equation 3.6 and equation 3.7 are identical for the above situation.

The data points, LS estimates, predicted values, and residuals, are shown in Figure 3.1.
2. Suppose the population model is:

yi = β1 + β2xi + ϵi

The y and x variables are:

y =

−1
2
5

 ; x =

1
2
3


Calculate the OLS estimators for β1 and β2.
Answer.
The full X matrix is:

X =

1 1
1 2
1 3


The (X ′X)−1 matrix is then:

(
X ′X

)−1 =

[1 1 1
1 2 3

]1 1
1 2
1 3




−1

=
[
3 6
6 14

]−1

= 1
6

[
14 −6
−6 3

]
=
[

7
3 −1

−1 1
2

]

The (X ′y) matrix is:

(
X ′y

)
=
[
1 1 1
1 2 3

]−1
2
5

 =
[

6
18

]



3.7 Exercises 25

Finally, the vector of OLS estimates is:

b =
[

7
3 −1

−1 1
2

] [
6
18

]
=
[
−4
3

]

That is, the estimated intercept is b1 = −4 and the estimated slope is b1 = 3.
3. Given the population model:

y = Xβ + ϵ,

derive the OLS estimator for β. Which assumptions do you need?
Answer.
The OLS estimator is defined as the vector of estimates b which minimizes the sum of squared
residuals e′e, where y = Xb + e.
The optimization problem can be stated as:

min
b

e′e

Substituting y − Xb into e, we get:

e′e = (y − Xb)′ (y − Xb) = y′y − 2
(
y′X

)
b + b′ (X ′X

)
b

Taking the derivative of e′e with respect to the vector b, and setting it equal to zero, we get:

∂e′e

b
= 0 − 2

(
y′X

)′ + 2
(
X ′X

)
b = 0

or

X ′Xb = X ′y.

Using assumption A.2 (full rank) so that (X ′X)−1 exists, we can solve for b:

b =
(
X ′X

)−1
X ′y

The full rank assumption also ensures that we have minimized (not maximized) e′e.
4. Suppose that we have the population model:

y = Xβ + ϵ,

but where the X matrix contains only a column of 1s. In this case, prove that b = ȳ.
Answer.
Again, the OLS estimator is:

b =
(
X ′X

)−1
X ′y

If the model contains only an intercept, then the X matrix is only a column of 1s. The OLS
estimator then becomes:

b =


[
1 1 . . . 1

]


1
1
...
1




−1 [
1 1 . . . 1

]


y1
y2
...

yn

 = 1
n

n∑
i=1

yi = ȳ
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5. Prove that the Method of Moments estimator for the population model in equation 3.8 is identical
to the least squared estimator in scalar form (equation 3.7). Hint: use the results that

n∑
i=1

(xiyi) − nx̄ȳ =
n∑

i=1
(xi − x) (yi − y)

and
n∑

i=1

(
x2

i

)
− nx2 =

n∑
i=1

(xi − x)2

Answer. Using assumptions A.3 and A.5 give the two moment conditions E[ϵi] = 0 and E[xiϵi] = 0
respectively. The sample counterparts to these two moment conditions are:

1
n

n∑
i=1

ei = 1
n

n∑
i=1

(yi − b0 − b1xi) = 0 (3.10)

and

1
n

n∑
i=1

xiei = 1
n

n∑
i=1

xi (yi − b0 − b1xi) = 0 (3.11)

Rearrange equation 3.10, and use the fact that
∑n

i=1 xi = nx̄:

nb0 = nȳ + nb1x̄

b0 = ȳ − b1x̄
(3.12)

Now substitute equation 3.12 into equation 3.11:
n∑

i=1

(
xiyi − (ȳ − b1x̄) xi − b1x2

i

)
= 0

and distribute the sum to each term in the expression:

n∑
i=1

xiyi − ȳ
n∑

i=1
xi + b1x̄

N∑
i=1

xi − b1

n∑
i=1

x2
i = 0 (3.13)

Again, use the fact that
∑n

i=1 xi = nx̄ and solve equation 3.13 for b1:

b1 =
∑n

i=1 (xiyi) − nx̄ȳ∑n
i=1

(
x2

i

)
− nx̄2

Finally, use the 2 hints in the question to write:

b1 =
∑n

i=1 (xi − x) (yi − y)∑n
i=1 (xi − x)2

6. Estimate a Cobb-Douglas production function by downloading data from Statistics Canada.
• Go to the Statistics Canada web page
• Click “Data”
• Search “output capital labour”
• Select “Multifactor productivity...”
• Click “Add/Remove data”
• Select “Multifactor productivity and related variables”
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• Tick only:
– “Labour input” → “Hours worked”
– “Gross output”
– “Capital cost”, then click “Apply”

• Select “(NAICS)”, and choose one industry (I chose “Oil and gas extraction”). Click “Apply”
• Select “Reference period”, choose 1961 to 2019, click “Apply”
• Select “Customize layout”, change “Display Reference period as” to “Row”
• Click “Download options”, select top option
• Open the file in Excel. Delete all the junk at the top and bottom of the file. Label the

columns: “year”, “L”, “Y” and “K” (or some such). Highlight all numerical values, right-
click, format cells, select “Numeric”. Save the file as a simple .csv file: “cobb.csv” (or some
such).

• In RStudio, open the .csv file (see Section 2.8) using, for example:

mydata <- read.csv(file.choose())

• Finally, estimate the model via LS:

lm(log(Y) ~ log(L) + log(K), data = cobb_douglas)

Coefficients :
( Intercept ) log( labour ) log( capital )

0.1350 0.3477 0.8823

• Interpretation: if labour were to increase by 1%, output is predicted to increase by 0.35%,
etc.



Chapter 4

Algebraic/geometric properties of least
squares

4.1 Orthogonality property of residuals
First, note that the LS residuals are “orthogonal” to the regressors:

X ′Xb − X ′y = 0 “normal equations”
(k × 1)

So,

−X ′(y − Xb) = −X ′e = 0

or,

X ′e = 0 (4.1)

Note that, by definition, equation 4.1 must be true. Both the least-squares method of minimizing e′e to
derive b, and the derivation through the Method of Moments condition that E[X ′b] = 0, imply equation
4.1.

Question: What does equation 4.1 imply for our ability to test the important assumption A.5?

Orthogonality is an important concept in econometrics. If two vectors in 2-dimensional space are
orthogonal, then they are at right-angles. The inner-product of orthogonal vectors (x and y for example)
is the null vector: x′y = y′x = 0. This is important because x′y = 0 implies that cov(x, y) =
E
[
(x − µx)′ (y − µy)

]
= 0.

4.2 Implication of X ′e = 0 and regression with a constant
If the model includes an intercept term, then one regressor (say, the first column of X) is a unit vector.
In this case we get three further results.

4.2.1 The LS residuals sum to zero

X ′e =

 1 . . . x1k
... . . . ...
1 . . . xnk


′ e1

...
en

 =

 1 . . . 1
... . . . ...

x1k . . . xnk


 e1

...
en



=


∑

i ei

?
?

 =

 0
...
0
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From the first element:
n∑

i=1
ei = 0 (4.2)

Question: How does this property relate to A.3?

4.2.2 The fitted regression passes through the sample mean
X ′y = X ′Xb

or,  1 . . . 1
... . . . ...

x1k . . . xnk


 y1

...
yn

 =

 1 . . . 1
... . . . ...

x1k . . . xnk


 1 . . . x1k

... . . . ...
1 . . . xnk


 b1

...
bk

 .

So, 
∑

i yi

?
?

 =

 n
∑

i xi2 . . .
? . . . ?
? . . . ?


 b1

...
bk

 .

From the first row of this vector equation:∑
i

yi = nb1 + b2
∑

i

xi2 + · · · + bk

∑
i

xik

or

ȳ = b1 + b2x2 + · · · + bkxk

4.2.3 The sample mean of the fitted y-values equals the sample mean of actual y-values
Recall that the unobservable components of yi can be replaced by estimates and residuals:

yi = x′
iβ + ϵi = x′

ib + ei = ŷi + ei.

So,

1
n

n∑
i=1

yi = 1
n

n∑
i=1

ŷi + 1
n

n∑
i=1

ei,

or,

ȳ = ŷ + 0 = ŷ

These last three results use the fact that the model includes an intercept.

4.3 Frisch-Waugh-Lovell Theorem
We first establish some results and develop some tools, then show the Frisch-Waugh-Lovell (FWL)
Theorem, and then briefly discuss some applications of the FWL theorem.
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4.3.1 Partitioning
The usual population regression model:

y = Xβ + ϵ
(n × 1) (n × k) (k × 1) (n × 1) (4.3)

can be partitioned into “blocks”. Assuming 2 blocks for simplicity:

y = X1β1 + X2β2 + ϵ
(n × 1) (n × k1) (k1 × 1) (n × k2) (k2 × 1) (n × 1) (4.4)

where k1 + k2 = k. Note that when multiplying or transposing matrices with a partition, the partitions
behave as if they were elements in a matrix.

Equations 4.3 and 4.4 are equivalent. In this section, we will investigate how the formula for b2 in
the LS regression of models 4.3 and 4.4 depend on X1, under what circumstances X1 is not needed to
determine b2, and how X1 may be used to transform X2 in such a way that X1 is not directly needed
to obtain b2 (a “two-stage” approach). Before we do this, we need some tools:

4.3.2 Two “orthogonal projection” matrices
Two orthogonal projection matrices, PX and MX , project any vector that they pre-multiply onto the
subspace S(X) and S⊥(X) respectively. Define these projection matrices to be:

PX = X
(
X ′X

)−1
X ′

and

MX =
(
I − X

(
X ′X

)−1
X ′
)

The interpretations of these projection matrices are:
• When a vector (y, for example) is pre-multiplied by PX , the result is the predicted (fitted values

ŷ) of a LS regression of y on X.
• When a vector (y, for example) is pre-multiplied by MX , the result is the residuals (e) from a LS

regression of y on X.
• PX is a “predicted-value-maker”.
• MX is a “residual-maker”.

Prove that the above interpretations of PX and MX are true.

We can also project vectors onto subspaces using only subsets, or blocks of the X matrix. For example,
PX1y, where:

PX1 = X1
(
X ′

1X1
)−1

X ′
1,

produces the fitted values from a regression of y on X1 only. Similarly, MX1y, where:

MX1 =
(
I − X1

(
X ′

1X1
)−1

X ′
1

)
,

produces the residuals from a regression of the model y = X1β1 + ϵ. For some ease of notation, we will
suppress the “X” in the subscript so that:

P1 = PX1

and

M1 = MX1
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Note that PX and MX are idempotent matrices. For example, MXMX = MXM ′
X = MX = M ′

XMX .
This result is used frequently in algebra that follows.

4.3.3 Invariance of ŷ and e to non-singular linear transformations
What would you expect to happen to the estimation results if you measured one of the x variables in
different units? For example, 1000s of dollars instead of dollars? In a model of energy consumption,
degrees Fahrenheit instead of degrees Celsius? The estimated values for the βs would change, but in a
way that corresponds to the change of units.

Such a change in units, where an x variable is linearly transformed (just by multiplying it and/or
adding to it), should not change the estimated model in a substantive way. It would be disturbing
if the model’s predictions ŷ, and residuals, changed under such a transformation. Any such linear
transformation can be represented in a k × k matrix (call it A) that post-multiplies X: XA. For
example, if X contains x1, x2 and x3, and we wanted x2 to be measured in 1000s of dollars instead of
dollars, then:

A =

 1 0 0
0 1

1000 0
0 0 1


The “invariance property” means that the models:

y = Xβ + ϵ

and

y = XAβ + ϵ

produce the same ŷ and e when estimated by LS.

Prove the above result.

4.3.4 Independence between LS estimators and orthogonal regressors
In general, in the model:

y = X1β1 + X2β2 + ϵ, (4.5)

b1 depends on the X2 data. This is intuitive: often the very reason that we include many of the
regressors in the model is to provide “controls”. These are variables that are correlated with the x
variables of interest, and that may also determine y.

That is, if we “drop” X1 from the model:

y = X2β2 + ϵ, (4.6)

then, in general, the LS estimates for β2 are not equal between models 4.5 and 4.6.
However, an important situation is that, if X1 and X2 are orthogonal (uncorrelated), then the LS

estimates for β2 from models 4.5 and 4.6 are equivalent. There is a messy, but useful, way to prove
this.
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Proof
Visualize the partitioned model:

y = [X1 : X2]
[

β1
β2

]
+ ϵ = Xβ + ϵ,

and the LS estimator is still:

b =
(
X ′X

)−1
X ′y.

We can rewrite the LS estimator as:

b =
{

[X1 : X2]′ [X1 : X2]
}−1

[X1 : X2]′ y

=


 X ′

1
. . .
X ′

2

 [ X1 : X2
]

−1  X ′
1

. . .
X ′

2

y

and (
b1
b2

)
=
[

X ′
1X1 X ′

1X2
X ′

2X1 X ′
2X2

]−1(
X ′

1y
X ′

2y

)
.

The “normal equations” underlying this are(
X ′X

)
b = X ′y

or: [
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

](
b1
b2

)
=
(

X ′
1y

X2
′y

)

Now, we can solve the normal equations independently for b1 and b2! The main advantage is that some
properties of b1 can be determined independently of b2. Solving the normal equations for b1 and b2:

X ′
1X1b1 + X ′

1X2b2 = X ′
1y (4.7)

X2
′X1b1 + X2

′X2b2 = X2
′y (4.8)

From 4.7:(
X ′

1X1
)

b1 = X ′
1y − X ′

1X2b2,

or:

b1 =
(
X ′

1X1
)−1

X ′
1y −

(
X ′

1X1
)−1

X ′
1X2b2

=
(
X1

′X1
)−1 [

X ′
1y − X ′

1X2b2
] (4.9)

Now we see that only if X ′
1X2 = 0, then b1 = (X ′

1X1)−1 X ′
1y. If a regressor is dropped from the

model, the estimated values for b will change, unless the dropped variable is orthogonal to the other
regressors.
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4.3.5 FWL Theorem
We have proved two algebraic properties of LS estimation: (i) any linear transformation of X leaves ȳ
and e unchanged; (ii) b2 remains unchanged when X1 is dropped, only if X ′

1X2 = 0.
Now, in general X ′

1X2 ̸= 0; the x variables in the model are typically correlated with each other.
But consider that we could use X1 in order to transform X2 in a way such that the transformation
is orthogonal to X1. Then, X1 is no longer needed to estimate β2. Furthermore, if we apply the
same transformation to y, then ŷ and e will also be identical. The FWL theorem says that such a
transformation is M1. That is, the two models:

y = X1β1 + X2β2 + ϵ (4.10)

and

M1y = M1X2β2 + ϵ (4.11)

yield identical results for ŷ, e, and b2 when estimated by LS.

Proof
Again, the LS estimator is:

b =
(
X ′X

)−1
X ′y (4.12)

Applying formula 4.12 to model 4.11, the LS estimator for β2 is:

b⋆
2 =

(
X ′

2M1X2
)−1

X ′
2M1y (4.13)

The trick is to show that b⋆
2 is identical to b2 from model 4.10. The estimated model corresponding to

model 4.10 is:

y = X1b1 + X2b2 + e

Pre-multiply both sides by X ′
2M1:

X ′
2M1y = X ′

2M1X1b1 + X ′
2M1X2b2 + X ′

2M1e

= 0 + X ′
2M1X2b2 + 0

Finally, solve for b2:

X ′
2M1X2b2 = X ′

2M1y

b2 =
(
X ′

2M1X2
)−1

X ′
2M1y

Hence, b⋆
2 = b2.

The FWL theorem suggests that the LS estimates for β2 in a partitioned model such as 4.10 can be
obtained through the following steps:

(i) Regress X2 on X1, get the residuals (M1X2).
(ii) Regress y on X1, get the residuals (M1y).
(iii) Regress the residuals from (ii) onto (i).
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4.4 Applications of FWL
Now that we know the implications of the FWL theorem, it is much easier to effect, and understand,
common transformations of variables that are practised in econometrics:

• deviations from the mean (de-meaning or centring the variables)
• de-seasonalizing data
• de-trending data

All of the transformations above are non-singular linear transformations. From the invariance prop-
erty in Section 4.3.3 we know that ȳ and e will be unchanged. If we can showed that the transformed
data is orthogonal to any of the regressors, then the FWL theorem tells us those regressors may be
dropped from the model.

In most cases of de-ZZZZing data, the transformations are not necessary and do not change anything
substantive in the model. The transformations can, however, aid in the visualization of the data, inter-
pretation of the estimated parameters, and in some cases ease the computational burden in calculating
the estimates.

4.4.1 Centring data (deviations from the mean, or de-meaning)
Take the simple model:

y = β1 + β2x + ϵ (4.14)

Under what circumstances can we drop the constant β1 from model 4.14? The LS estimators for β2
would be different if we were to instead estimate the model:

y = β2x + ϵ (4.15)

Figure 4.1: A least-squares line fitted through some uncentred data. The estimated intercept of b1 = 63.7
is outside the range of the data, and has little economic meaning in most models.

However, if we use “centred” data, we can drop the intercept. To illustrate this, download some
uncentred data:

un <- read.csv("http://rtgodwin.com/data/centrethis.csv")

Estimate the intercept and slope in model 4.14:
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lm(y ~ x, data=un)

Coefficients :
( Intercept ) x

63.744 -4.328

Plot the data and the estimated line:

plot(un$x, un$y, ylim=c(0,60), xlim=c(0,9))
abline(lm(y ~ x, data=un))

Figure 4.2: The least-squares line is forced through the origin if the model does not include an intercept.

The plot appears in Figure 4.1. If we instead estimate model 4.16 the estimated β2 is of course different
since the least-squares line must pass through the origin (see Figure 4.2):

abline(lm(y ~ x -1, data=un))

Recall that the regression line must pass through the sample means of the data (see Section 4.2.2). If
the data all has mean zero, then the LS line must pass through the origin anyway, and dropping the
intercept has no effect.

To centre data, we transform it by subtracting its sample mean:

y⋆ = y − iȳ ; x⋆ = x − ix̄

where y⋆ and x⋆ are the centred variables, and i is a column vector of 1s:

i =

 1
...
1


(n × 1)

To centre the variables in R:

xstar <- un$x - mean(un$x)
ystar <- un$y - mean(un$y)

Now we can see that estimating the model:

y⋆ = β2x⋆ + ϵ (4.16)

yields identical results to model 4.14, for the estimated β2:
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lm(ystar ~ xstar -1)

Coefficients :
xstar

-4.328

The trick is that the variables y⋆ and x⋆ are orthogonal to the column vector i. The FWL theorem
says that exclusion of this regressor (i) does not affect the LS estimates. To prove this, consider the
residuals from regressions of x on a constant, and y on a constant. That is, consider the vectors Miy
and Mix. Let:

Mi = I − i
(
i′i
)−1

i′ = I − 1
n

ii′ (4.17)

Then,

Miy = y − iȳ = y⋆

The Mi matrix, when pre-multiplying a vector, creates the deviations-from-means. That is, it centres
a variable. To see how this works, multiply out Miy:

Miy =


 1 . . . 0

... . . . ...
0 . . . 1

−

 1/n . . . 1/n
... . . . ...

1/n . . . 1/n



 y1

...
yn



=

 y1 − y1/n − y2/n − . . . − yn/n
...

yn − y1/n − y2/n − . . . − yn/n

 =

 y1 − ȳ
...

yn − ȳ


The transformed (centred) variables are now orthogonal to the regressor i, that is (Miy)′i = 0 and
(Mix)′i = 0, and so the intercept may be dropped from the model without any substantive effect.

4.4.2 De-seasonalizing
Time series data that is reported quarterly may have seasonal effects. Certain activities only take place
in the summer, more presents are purchased in the 4th quarter, etc. It is often desirable to visualize,
and work with, data that has been de-seasonalized. That is, we sometimes want to purge the seasonal
patterns from data, and explain variation in the data that is independent from seasonal variation. For
example, see Figure 4.3 for the quarterly residential demand for natural gas in Manitoba, from 1990 Q1
to the end of 2001 Q41. There is a strong seasonal component.
To produce a graph similar to that in Figure 4.3, download the data in R:

gas <- read.csv("http://rtgodwin.com/data/MBgas.csv")

Create a time-trend variable, and plot the gas consumption over time:

gas$time <- 1:nrow(gas)
plot(gas$time, gas$gigalitres, type = "l",

xlab = "time period", ylab = "gigalitres")

As mentioned, it may be desirable to remove the trend or de-seasonalize the data, in order that
non-seasonal variation may be more easily visualized and examined. This can be accomplished through
1Data from: Statistics Canada. Table 25-10-0005-01 Supply and demand of primary and secondary energy in natural units,
quarterly, with data for years 1990 - 2001

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2510000501
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2510000501
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Figure 4.3: Quarterly seasonality in the residential demand for natural gas in Manitoba.

quarterly dummy variables. Let q1 be a dummy variable equal to 1 if the reference period is in the first
quarter, and 0 otherwise. Similar definitions follow for the dummy variables q2, q3, and q4. That is,
we need to create dummy variables that look like:

q1 =



1
0
0
0
1
0
...


; q2 =



0
1
0
0
0
1
...


; q3 =



0
0
1
0
0
0
...


; q4 =



0
0
0
1
0
0
...


Beware! We cannot use all four of these dummy variables in our regression model (otherwise we fall
into the “dummy variable trap”). This is because there is an exact linear dependency between these
four dummy variables, and the intercept. That is:

q1 + q2 + q3 + q4 = i (4.18)

Including all 4 dummies, and the intercept, would be a violation of A.2 (no perfect multicollinearity):
the (X ′X) matrix is not invertible and the LS estimator is undefined. We must exclude one of the
dummy variables, or exclude the intercept.

Question: Suppose we estimate a model where we exclude q1. What would change if we instead
decided to exclude q2, or the intercept?

To de-seasonalize the data, we can regress the seasonal variable on the system of dummy variables,
and extract the residuals. That is, the de-seasonalized variable is MQy, where Q consists of the regressors
representing the seasonal dummy variables. For example:

Q =
[

i q2 q3 q4

]
=


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1
...

...
...

...


MQy consists of variation that is independent of the seasonal component. The de-seasonalized variable
is now orthogonal to the seasonal dummies. To accomplish this de-seasonalization in R, we first create
the system of dummies:
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gas$q4 <- gas$q3 <- gas$q2 <- gas$q1 <- 0
gas$q1[seq(1, n, 4)] <- 1
gas$q2[seq(2, n, 4)] <- 1
gas$q3[seq(3, n, 4)] <- 1
gas$q4[seq(4, n, 4)] <- 1

and then extract the residuals from the regression of the time series on the seasonal dummies:

Mgigalitres <- lm(gigalitres ~ q2 + q3 + q4, data = gas)$residuals

Now plot the de-seasonalized variable over time (see Figure 4.4):

plot(gas$time, Mgigalitres, type = "l")

Figure 4.4: De-seasonalized time series of the residential demand for gas in MB.

Questions:

1. What is the mean value of the de-seasonalized data?
2. What is the mean value of the de-seasonalized data, for the 1st quarter?
3. When is it acceptable to “drop” seasonal dummy variables from a model?

To answer question 3, consider what is wrong with estimating the model:

gas⋆ = β1 + β2temp + ϵ (4.19)

where temp is the mean quarterly temperature at Richardson International airport obtained from En-
vironment Canada, and gas⋆ = Mqgas is the de-seasonalized demand for MB gas. Estimate this model
in R:

summary(lm(Mgigalitres ~ gas$temp))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 0.6650 2.8550 0.233 0.817
gas$temp -0.2350 0.2397 -0.980 0.332

Residual standard error: 19.21 on 46 degrees of freedom
Multiple R- squared : 0.02046 , Adjusted R- squared : -0.0008304
F- statistic : 0.961 on 1 and 46 DF , p-value: 0.3321
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Notice that the variable gas$temp is insignificant. Consider instead the regression model:

gas⋆ = β1 + β2temp⋆ + ϵ (4.20)

where temp⋆ = MQtemp and has likewise been de-seasonalized. Estimating this in R:

Mtemp <- lm(temp ~ q2 + q3 + q4, data = gas)$residuals
summary(lm(Mgigalitres ~ Mtemp - 1))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

Mtemp -8.0933 0.7641 -10.59 4.83e -14 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.44 on 47 degrees of freedom
Multiple R- squared : 0.7048 , Adjusted R- squared : 0.6985
F- statistic : 112.2 on 1 and 47 DF , p-value: 4.835e -14

Notice that Mtemp is significant.

Questions:

1. Which model is the “correct” one to estimate, model 4.19 or model 4.20? Why?
2. Why has the intercept been dropped in model 4.20?
3. In general, what might be the problem with using de-seasonalized data?

4.5 Goodness of fit
One way of measuring the “quality” of a fitted regression model is by the extent to which the model
“explains” the sample variation for y. That is, our LS model seeks to explain the sample variance of y,
and our measure of fit tells how good a job the model does. Recall that the sample variance of y is:

1
(n − 1)

n∑
i=1

(yi − ȳ)2 .

Or, we could just use
n∑

i=1
(yi − ȳ)2

to measure variability. One estimator for variance has an (n − 1) in the denominator while another just
has n. Since we will be comparing the sample variance of two vectors with the same dimension (n × 1),
the denominator will cancel out.

Two measures of fit that are often used in conjunction with LS are the R-squared R2 and adjusted-
R-squared R̄2. In this section, we present both these measures of fit, and argue why R̄2 is usually
better.

4.5.1 Coefficient of Determination - R2

R2 is the ratio of variance in y that can be explained using the model (the X variables and LS estimates)
over the total variance in y. Start by writing our measure of sample variance in matrix form. Measures
of variability use the squared deviations-from-means, so we can use the Mi matrix (see equation 4.17):

y′Miy = y′M ′
iMiy =

n∑
i=1

(yi − ȳ)2 (4.21)
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Recall that LS “decomposes” y into two components, fitted values and residuals:

y = PXy + MXy = Xb + e = ŷ + e

We can take the sample variance of both sides of y = ŷ + e. Start by taking the deviations in means of
both sides:

Miy = Miŷ + Mie = Miŷ + e (4.22)

We have converted the components of the model into deviations from means.

Question: Why does Mie = e?

Now, pre-multiply both sides of equation 4.22 by its own transpose:

y′Miy = y′M ′
iMiy = (Miŷ + e)′ (Miŷ + e)

= ŷ′Miŷ + e′e + 2e′Miŷ
.

however,

e′Miŷ = e′M i
′ŷ = (Mie)′ ŷ = e′ŷ = e′X

(
X ′X

)−1
X ′y = 0

We have “decomposed” the sample variance of y into two parts: that which is explained by the estimated
model (ŷ), and that which is unexplained (e).

Question: Why does e′Miŷ = 0? Recall the rule for taking the variance of a sum of two random
variables.

So, we have (recall that ŷ = ȳ):

y′Miy = ŷ′Miŷ + e′e

∑n
i=1 (yi − ȳ)2 =

∑n
i=1 (ŷi − ȳ)2 +

∑n
i=1 e2

i

TSS = ESS + RSS

Where TSS = “total sum of squares”, ESS = “explained sum of squares”, and RSS = “residual sum of
squares”. This lets us define the R-squared:

R2 =
(

ESS

TSS

)
= 1 −

(
RSS

TSS

)
R2 is the portion of variance in the dependent variable that can be explained by the estimated model.

• The second equality in the definition of R2 holds only if model includes an intercept.
• R2 =

(
ESS
T SS

)
≥ 0

• R2 = 1 −
(

RSS
T SS

)
≤ 1

• So, 0 ≤ R2 ≤ 1
• R2 is unitless.

Question: What is the interpretation of R2 = 0 and R2 = 1?
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4.5.2 R2 increases when a regressor is added to the model
What happens if we add any regressor(s) to the model? Consider the population model:

y = X1β1 + ϵ (4.23)

then consider adding regressors to it:

y = X1β1 + X2β2 + u (4.24)

Optimization problem A - apply LS to 4.24:

min
(
û′û

)
; û = y − X1b1 − X2b2

Optimization problem B - apply LS to 4.23:

min
(
e′e
)

; e = y − X1β̂1

Problem B is just Problem A, subject to the restriction: β2 = 0. Minimized value in A must be ≤
minimized value in B. So, û′û ≤ e′e.

• Adding any regressor(s) to the model cannot increase (and typically will decrease) the sum of
squared residuals.

• So, adding any regressor(s) to the model cannot decrease (and typically will increase) the value
of R2.

• “Junk” variables could be added to the model to get the R2 arbitrarily high.
• Means that R2 is not really a very interesting measure of the “quality” of the regression model,

in terms of explaining sample variability of the dependent variable.

For these reasons, we usually “adjust” the Coefficient of Determination.

4.5.3 Adjusted R-square: R̄2

Modify R2:

R2 =
[
1 − e′e

y′Miy

]
to become:

R̄2 =
[
1 − e′e/(n − k)

y′Miy/(n − 1)

]
We’re adjusting for “degrees of freedom” in the numerator and denominator. Now, when a regressor is
added to the model, R̄2 increases due to the improved “fit” (e′e decreases), and decreases due to the
penalty imposed by k. R̄2 only increases if the improvement in model fit due to the additional regressor
dominates the penalty for adding another regressor.

“Degrees of freedom” are the number of independent pieces of information.

When we calculate ȳ, we lose one degree of freedom. That is, the sample y, together with ȳ, only
contains (n − 1) independent pieces of information. For example, if y = {1, 3, z}, and ȳ = 3, then you
know that z = 5. Similarly, in order to calculate e, we first need to calculate the (k × 1) vector b. Once
we have b, there are only (n − k) pieces of independent information left in e.
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e = y − Xb. We estimate k parameters from the n data-points, before we can calculate e. We have
(n − k) “degrees of freedom” associated with the fitted model.

Some final points about R2 and R̄2:

• Possible for R̄2 ≤ 0 (even with an intercept in the model).
• R̄2 can increase or decrease when we add regressors.
• In multiple regression, R̄2 will increase (decrease) if a variable is deleted, if and only if the asso-

ciated t-statistic has absolute value less than (greater than) unity.
• If the model doesn’t include an intercept, then TSS ̸= ESS + RSS, and in this case there is no

longer any guarantee that 0 ≤ R2 ≤ 1.
• Must be careful comparing R2 and R̄2 values across models. For example:

Ĉi = 0.5 + 0.8Yi ; R2 = 0.90
log

(
Ĉi

)
= 0.2 + 0.75Yi ; R2 = 0.80

The sample variation is in different units.

4.6 Exercises
1. Prove that the LS residuals sum to zero, that the regression line passes through the means of the

data, and that the sample mean of the actual y values equals the sample mean of the fitted y
values.
Answer. See Section 4.2 for the proofs.

2. Derive the formula for b2 in the partitioned model. Show that it is equivalent to equation 4.13.
Answer. The least-squares “normal equations” are:(

X ′X
)

b = X ′y

In the partitioned model, the normal equations can be partitioned as well:[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

](
b1
b2

)
=
(

X ′
1y

X2
′y

)

Solving the normal equations for b1 and b2:

X ′
1X1b1 + X ′

1X2b2 = X ′
1y (4.25)

X2
′X1b1 + X2

′X2b2 = X2
′y (4.26)

From 4.25:(
X ′

1X1
)

b1 = X ′
1y − X ′

1X2b2,

or:

b1 =
(
X ′

1X1
)−1

X ′
1y −

(
X ′

1X1
)−1

X ′
1X2b2

=
(
X1

′X1
)−1 [

X ′
1y − X ′

1X2b2
] (4.27)

Now, substitute 4.27 into 4.26:(
X ′

2X1
) [(

X ′
1X1

)−1
X ′

1y −
(
X ′

1X1
)−1

X ′
1X2b2

]
+
(
X ′

2X2
)

b2 = X ′
2y,
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or [(
X ′

2X2
)

−
(
X ′

2X1
) (

X ′
1X1

)−1 (
X ′

1X2
)]

b2 = X ′
2y −

(
X ′

2X1
) (

X ′
1X1

)−1
X ′

1y

and so:

b2 =
[(

X ′
2X2

)
−
(
X ′

2X1
) (

X ′
1X1

)−1 (
X ′

1X2
)]−1

[
X ′

2

(
I − X1

(
X ′

1X1
)−1

X ′
1

)
y
]

Define:

M1 =
(
I − X1

(
X ′

1X1
)−1

X ′
1

)
Then, we can write:

b2 =
(
X2

′M1X2
)−1

X2
′M1y

Which is the same as the FWL estimator in equation 4.13.
3. The M matrix is sometimes referred to as a “residual-maker” matrix. That is, MQq produces the

LS residuals from a regression of the vector q on the matrix Q. Let M1 =
(
I − X1 (X ′

1X1)−1 X ′
1

)
.

Prove that M1y is equal to the LS residuals of a regression of y on X1.
Answer.

M1y =
(
I − X1

(
X ′

1X1
)−1

X ′
1

)
y = y − X1

(
X ′

1X1
)−1

X ′
1y

But (X ′
1X1)−1 X ′

1y is just the LS estimator from a regression of y on X1, so:

M1y = y − X1b1 = e1

where e1 are the residuals from an LS regression of y on X1.
4. Prove that if the data is transformed using M1, then X1 may be dropped from the regression

model.
Answer. This is the same as the FWL proof in Section 4.3.5.

5. Download Canadian GDP data using:

cangdp <- read.csv("http://ryantgodwin.com/data/canada-gdp.csv")

De-trend the log of GDP. Compare the time plot of the log of GDP, with the time plot of the
de-trended log of GDP. How do you interpret values of the de-trended time series? What might
be a problem with using the de-trended variable in a regression model?
Answer. To de-trend the variable, extract the residuals from a regression of log(GDP) on the
Year variable:

detrendedlogGDP <- lm(log(GDP) ~ Year, data = cangdp)$residuals

Then, compare the two time plots:

plot(cangdp$Year, log(cangdp$GDP), type="l")
plot(cangdp$Year, detrendedlogGDP, type="l")

Interpretation: since the GDP variable is in logs, and after the variable has been centred, each
observation is now a percentage deviation from the mean. A potential problem: unless all variables
in the model are de-trended in the same way, omitting the time trend and using de-trended GDP
will not give the same estimates as including the time trend and using the trending GDP.
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6. Take a simple population model: y = β1 + β2x + ϵ. Sketch some data, and the LS line, for which
R2 = 0 and R2 = 1. What must be true of b2 if R2 = 0 and if R2 = 1?
Brief answer. When b2 = 0, R2 = 0. When the estimated LS “line” passes through each data
point, R2 = 1 .

7. Estimate a LS model in R, and find the R2 and R̄2. Randomly create a “junk” variable and add
it to the model. What happens to the R2 and R̄2?
Brief answer. The R2 will increase, but the R̄2 can either increase or decrease.



Chapter 5

Finite sample properties of the least
squares estimator

In this chapter, we will derive some of the finite sample properties for the least squares estimator. By
finite sample properties, we mean the statistical properties of b for some finite value of n. Later, we will
consider the properties of b for when n → ∞ (i.e. asymptotic properties). Recall that the population
model is:

y = Xβ + ϵ

and that by assumptions A.3, A.4 and A.6, the error term is:

ϵ ∼ N
[
0, σ2In

]
and also recall that our LS estimator is:

b =
(
X ′X

)−1
X ′y = f(y)

That is, b is a function of the random sample data, so is itself random! This is a very important point.

ϵ is random −→ y is random −→ b is random

• b is an estimator of β. It is a function of the random sample data.
• b is a “statistic”.
• b has a probability distribution – called its sampling distribution.

Interpretation of the sampling distribution:

• Repeatedly draw all possible samples of size n.
• Calculate values of b each time.
• Construct a relative frequency distribution for the b values and probability of occurrence.
• It is a hypothetical construct.

Question: Why is the sampling distribution a hypothetical construct?

The sampling distribution offers one basis for answering the question: “How good is b as an estimator
of β?”

We will be assessing the quality of the estimator in terms of its performance in repeated samples.
The finite sample properties that we derive in this chapter tell us nothing about the quality of the
estimator for one particular sample.
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We will explore some of the properties of the LS estimator, b, and build up its sampling distribution.
We’ll introduce some general results, and then apply them to our specific problem. Before we do so,
let’s look at a simulation experiment using R. For the experiment, I will estimate the simple model:

y = β1 + β2x + ϵ

where I will maintain all of the usual assumptions (A.1-A.6) and choose:

β =
[

β1
β2

]
=
[

2
−4

]
; σ2 = 1 ; n = 100

In addition I will use the unrealistic assumption that x is “fixed in repeated samples”, and will generate
the x variable from a N(0, 1) distribution (I will use the same distribution for ϵ as well).

In R, run the following code to set the parameters of the experiment:

beta1 <- 2
beta2 <- -4
n <- 100
x <- rnorm(n)

and now run the following code several times:

epsilon <- rnorm(n)
y <- beta1 + beta2 * x + epsilon
lm(y ~ x)

Coefficients :
( Intercept ) x

1.886 -4.060

Question: How can you use the above code to simulate the sampling distribution of b2?

To simulate the sampling distribution, we need to run the above code many, many times, and collect
the value of b2 each time. Then, we can plot b2 in a histogram, take the E[b2], take the var[b2], etc. I
set the random seed so that when you run the code on your computer, you get the same results as me.
I use a for loop to repeat the experiment nrep = 10000 times:

set.seed(7010)
nrep <- 10000
n <- 100
x <- rnorm(n)
beta1 <- 2
beta2 <- -4
b2 <- numeric(nrep)
for(i in 1:nrep){

epsilon <- rnorm(n, mean=0, sd=1)
y <- beta1 + beta2 * x + epsilon
b2[i] <- lm(y ~ x)$coefficients[2]

}
mean(b2)
var(b2)
hist(b2)

> mean(b2)
[1] -4.000452
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> var(b2)
[1] 0.01061148

The histogram of all 10,000 b2 values is shown in Figure 5.1.

Figure 5.1: A simulated sampling distribution.

Questions:

1. What distribution appears to describe Figure 5.1?
2. Is the average value of the estimator close to the true population value?

5.1 Unbiased

Definition 5.1 — Unbiased estimator. An estimator, θ̂, is an unbiased estimator of the parameter vector,
θ, if:

E[θ̂] = θ

That is, if E[θ̂(y)] = θ, or
∫

θ̂(y)p(y|θ)dy = θ. The “Bias” of θ̂ is the quantity:

Bias(θ, y) = E[θ̂(y) − θ]

In words, an estimator is unbiased if it gives the right answer on average.

Example 5.1 — Unbiasedness of ȳ Let {y1, y2, . . . , yn} be a random sample from population with a
finite mean, µ, and a finite variance, σ2. Consider the statistic:

ȳ = 1
n

n∑
i=1

yi

Then,

E[ȳ] = E
[

1
n

n∑
i=1

yi

]
= 1

n

n∑
i=1

E (yi) = 1
n

n∑
i=1

µ =
( 1

n
nµ

)
= µ

So, ȳ is an unbiased estimator of the parameter, µ. Here, there are lots of possible unbiased estimators
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of µ. So, we will need to consider additional characteristics of estimators to help us choose from among
them.

Return to our LS problem:

b =
(
X ′X

)−1
X ′y

Recall assumption A.5. We will use the strongest version of this assumption - that X is non-random.
We could use the weaker versions of the assumption, and we’ll get the same results, but the notation
will be more cumbersome. Now, take the expected value of the random estimator b:

E(b) = E
[(

X ′X
)−1

X ′y
]

=
(
X ′X

)−1
X ′E(y)

=
(
X ′X

)−1
X ′E[Xβ + ϵ] =

(
X ′X

)−1
X ′[Xβ + E(ϵ)]

=
(
X ′X

)−1
X ′[Xβ + 0] =

(
X ′X

)−1
X ′Xβ

= β

(5.1)

This proves that:

The LS estimator of β is Unbiased.

5.2 Linear
Definition 5.2 — Linear estimator. Any estimator that is a linear function of the random sample data
is called a Linear Estimator.

Example 5.2 — Sample average is linear. Let {y1, y2, . . . , yn} be a random sample from population with
a finite mean, µ, and a finite variance, σ2. Consider the statistic:

ȳ = 1
n

n∑
i=1

yi = 1
n

[y1 + y2 + · · · + yn]

This statistic is a linear estimator of µ (note that the “weights” are non-random).

Return to our LS problem:

b = (X ′X)−1 X ′y = Ay
(k × 1) (k × n)(n × 1)

Note that, under our (strictest form of the) assumptions, A is a non-random matrix. So, b1
...

bk

 =

 a11 . . . a1n
... . . .

...
ak1 . . . akn


 y1

...
yn


For example, b1 = [a11y1 + a12y2 + · · · + a1nyn], etc.

Thus:

The LS estimator, b, is a linear (and unbiased) estimator of β.

5.3 Efficient
Now let’s consider the dispersion (variability) of b, as an estimator of β.
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Definition 5.3 Suppose we have an (n × 1) random vector, x. Then the covariance matrix of x is
defined as the (n × n) matrix:

V (x) = E
[
(x − E(x))(x − E(x))′]

• Diagonal elements of V (x) are var(x1), . . . , var(xn).
• Off-diagonal elements are cov(xi, xj) ; i, j = 1, . . . , n ; i ̸= j.
• We have already made use of the covariance matrix when we made assumption A.4.

Return to our LS problem. We have a (k × 1) random vector, b, and we know that E(b) = β. The
covariance matrix of b, V (b), is:

V (b) = E
[
(b − E(b))(b − E(b))′]

= E
[
(b − β)(b − β)′]

Now,

b =
(
X ′X

)−1
X ′y =

(
X ′X

)−1
X ′(Xβ + ϵ)

=
(
X ′X

)−1 (
X ′X

)
β +

(
X ′X

)−1
X ′ϵ

= Iβ +
(
X ′X

)−1
X ′ϵ

So,

(b − β) =
(
X ′X

)−1
X ′ϵ (5.2)

Using the result from 5.2 in V (b) we have:

V (b) = E
{[(

X ′X
)−1

X ′ϵ
] [(

X ′X
)−1

X ′ϵ
]′}

=
(
X ′X

)−1
X ′E

[
ϵϵ′]X

(
X ′X

)−1

For assumption A.4, we showed earlier that because E(ϵ) = 0:

V (ϵ) = E
(
ϵϵ′) = σ2In

So, we have:

V (b) =
(
X ′X

)−1
X ′E

[
ϵϵ′]X

(
X ′X

)−1

=
(
X ′X

)−1
X ′σ2IX

(
X ′X

)−1

= σ2 (X ′X
)−1 (

X ′X
) (

X ′X
)−1

= σ2 (X ′X
)−1

.

So, the covariance matrix of b is:

V (b) = σ2 (X ′X
)−1 (5.3)

Question: What is the interpretation of the diagonal and off-diagonal elements of this matrix? What
might the elements of this matrix be used for, in practice?

Finally, because the error term, ϵ is assumed to be Normally distributed,

1. y = Xβ + ϵ: this implies that y is also Normally distributed.
2. b = (X ′X)−1 X ′y = Ay: this implies that b is also Normally distributed.
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Question: Why does the Normality of ϵ transfer to b?

We now have the full sampling distribution of the LS estimator, b:

b ∼ N
[
β, σ2 (X ′X

)−1
]

Note:

• This result depends on our rigid assumptions about the various components of the regression
model.

• The Normal distribution here is a “multivariate Normal” distribution.
• As with estimation of the population mean µ (see Example 5.1), there are lots of other unbiased

estimators of β.

Question: How might we choose between the many possible linear and unbiased estimators for β?
Why is linearity desirable?

We need to consider other desirable properties that these unbiased estimators may have. One option
to help discern the “best” estimator for β is to take into account the estimators’ precisions.

Definition 5.4 Suppose that we have two different unbiased estimators, θ̂1 and θ̂2, of the (scalar)
parameter, θ. Then we say that θ̂1 is at least as efficient as θ̂2 if var

(
θ̂1
)

≤ var
(
θ̂2
)

Note:

• The variance of an estimator is just the variance of its sampling distribution.
• “Efficiency” is a relative concept.

Question: What if there are 3 or more unbiased estimators being compared?

5.3.1 Mean Squared Error (MSE)
What if one or more of the estimators being compared is biased? In this case we can take account of
both variance, and any bias, at the same time by using “mean squared error” (MSE) of the estimators.

Definition 5.5 Suppose that θ̂ is an estimator of the (scalar) parameter, θ. Then the MSE of θ̂ is
defined as:

MSE(θ̂) = E
[
(θ̂ − θ)2

]
Note that:

MSE(θ̂) = var(θ̂) + [Bias(θ̂)]2

To prove this, write:

MSE(θ̂) = E
[
(θ̂ − θ)2

]
= E

[(
θ̂ − E[θ̂] + E[θ̂] − θ

)2
]

,

expand out, and note that E[E(θ̂)] = E(θ̂) and E[θ̂ − E(θ̂)] = 0. The above expression makes it clear
that if the estimator is unbiased, the MSE equals the variance.
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Definition 5.6 Suppose we have two (possibly) biased estimators, θ̂1 and θ̂2, of the (scalar) parameter,
θ. Then we say that θ̂1 is at least as efficient as θ̂2 if MSE

(
θ̂1
)

≤ MSE
(
θ̂2
)
.

5.3.2 Efficiency and MSE for a vector of estimators
If we extend all of this to the case where we have a vector of parameters, θ, then we have the following
definitions:

Definition 5.7 Suppose that we have two different unbiased estimators, θ̂1 and θ̂2, of the parameter
vector, θ. Then we say that θ̂1 is at least as efficient as θ̂2 if ∆ = V

(
θ̂2
)

− V
(
θ̂1
)

is positive
semi-definite.

Definition 5.8 Suppose that we have two different (possibly) biased estimators, θ̂1 and θ̂2, of the
parameter vector, θ. Then we say that θ̂1 is at least as efficient as θ̂2 if ∆ = MMSE

(
θ̂2
)

−

MMSE
(
θ̂1
)

is positive semi-definite.

Note: MMSE(θ̂) = E
[
(θ̂ − θ)(θ̂ − θ)′

]
= V [θ̂] + Bias(θ̂) Bias(θ̂)′.

5.3.3 Gauss-Markhov theorem
Taking account of its linearity, unbiasedness, and its precision, in what sense is the LS estimator, b, of
β, optimal?

Gauss-Markhov Theorem: In the “standard” linear regression model, y = Xβ + ϵ, the LS estimator,
b, of β is Best Linear Unbiased (BLU). That is, it is efficient in the class of all linear and unbiased
estimators of β.

Question: Why is this an interesting result?

Proof : Let b0 be any other linear estimator of β:

b0 = Cy ; for some non-random C

The covariance matrix for b0 is:

V (b0) = CV (y)C ′ = C
(
σ2In

)
C ′ = σ2CC ′

Take the difference between b0 and b:

b0 − b = Cy −
(
X ′X

)−1
X ′y = Dy,

where

D = C −
(
X ′X

)−1
X ′

is the difference between how the other estimator uses the X data to “weight” the y data (C), and how
the LS estimator uses the X data ((X ′X)−1 X ′). Now restrict b0 to be unbiased, so that:

E (b0) = E(Cy) = CXβ = β.

This requires that CX = I, which in turn implies that:

DX =
[
C −

(
X ′X

)−1
X ′
]

X = CX − I = 0
(
and X ′D′ = 0

)
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Solve for C in terms of D:

C = D +
(
X ′X

)−1
X ′,

and return to the covariance matrix of b0:

V (b0) = σ2CC ′

= σ2
[
D +

(
X ′X

)−1
X ′
] [

D +
(
X ′X

)−1
X ′
]′

= σ2
[
DD′ +

(
X ′X

)−1
X ′X

(
X ′X

)−1
]

; DX = X ′D′ = 0

= σ2DD′ + σ2 (X ′X
)−1

= σ2DD′ + V (b)

or:

[V (b0) − V (b)] = σ2DD′ ; σ2 > 0 (5.4)

Now we just have to “sign” this (matrix) difference:

η′ (DD′)η =
(
D′η

)′ (
D′η

)
= v′v =

n∑
i=1

v2
i ≥ 0

So, ∆ = [V (b0) − V (b)] is a p.s.d. matrix, implying that b0 is relatively less efficient than b. Result:

The LS estimator is the Best Linear Unbiased estimator (BLUE) of β.

Questions:

1. What assumptions did we use, and where?
2. Were there any standard assumptions that we didn’t use?
3. What does this suggest?

5.4 Exercises
1. Explain why the LS estimator is a random variable.

Answer. b is a linear function of y, and y is a linear function of ϵ. Since ϵ is random, so is b.
2. Show that the LS estimator is linear.

Answer. See Section 5.2.
3. Prove that the LS estimator is unbiased.

Answer. See Section 5.1.
4. Derive the variance of the LS estimator, stating any assumptions that you use.

Answer. See the derivation of equation 5.3 in Section 5.3.
5. Explain the result of the Gauss-Markov theorem, and why it is important.

Answer. The Gauss-Markov theorem states that V(β̂) − V(b) is a positive-semi-definite matrix,
where β̂ is any linear and unbiased estimator for β and b is the LS estimator. That is, the LS
estimator has the lowest variance out of the entire class of linear and unbiased estimators for β.
This is important because there are many such possible estimators. The G-M theorem explains a
reason why LS might be the “best” choice among them.

6. Suppose that we have our usual linear model:

y = Xβ + ϵ,
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but that we partition the X matrix and β vector and write the model as:

y = X1β1 + X2β2 + ϵ.

All of the usual assumptions are satisfied, except that E[ϵ] = X1γ. That is, the mean vector for
the disturbances is a linear combination of a subset of the regressors (implying that ϵ and X1 are
correlated). Let b1 and b2 be the OLS estimators for β1 and β2. Obtain the expressions for E[b1]
and E[b2], and interpret your results.
Answer. The LS estimator for β1 is:

b1 =
(
X ′

1M2X
)−1

X ′
1M2y,

where M2 = I − X2 (X ′
2X2)−1 X ′

2. Substituting in the population model for y, and expanding, we
have:

b1 =
(
X ′

1M2X1
)−1

X ′
1M2 (X1β1 + X2β2 + ϵ)

=
(
X ′

1M2X1
)−1

X ′
1M2X1β1 +

(
X ′

1M2X1
)−1

X ′
1M2X2β2

+
(
X ′

1M2X1
)−1

X ′
1M2ϵ

Using M2X2 = 0, and simplifying, we get:

b1 = β1 + 0 +
(
X ′

1M2X1
)−1

X ′
1M2ϵ

Finally, taking the expectation of b1 and using E [ϵ] = X1γ we get:

E [b1] = β1 + 0 + γ

We will get a similar result for E [b2], except that the third term will cancel since M1X1 = 0:

E [b2] = 0 + β2 +
(
X2M ′

1X2
)−1

X ′
2M1X1γ = β2

A critical assumption for the unbiasedness of the OLS estimator is that the regressors are unrelated
to the error term (assumption A.5). The results above show that if some of the regressors (X1
for example) are related to the error term, then only those corresponding LS estimators will be
biased (b1). b2 remains unbiased as long as X2 is unrelated to ϵ.

7. The least absolute deviations (LAD) estimator is an alternative to the LS estimator. LAD is
less sensitive than LS to the presence of “outliers”, since LAD minimizes the sum of the absolute
residuals instead of the squared residuals. To perform a LAD regression in R, first install and load
the L1pack package:

install.packages("L1pack")
library(L1pack)

Now, take the same R code used to generate Figure 5.1, but add the following line before the for
loop:

b2.lad <- numeric(n)

and add the following line inside the for loop:

b2.lad[i] <- lad(y ~ x)$coefficient[2]

Run the simulation. Use the simulated distributions to answer the following questions: (i) Is the
LAD estimator unbiased? (ii) How does the variance of the LAD estimator compare to that of
the LS estimator?
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Simple Hypothesis Testing

An underlying principal of hypothesis testing is to compare an estimated value (such as bj) to a hy-
pothesized value (denoted βj,0), and assess the plausibility of the hypothesis by taking the variance of
the estimator into account.

In general, a hypothesis test begins with a null hypothesis, and an alternative hypothesis:

H0 : βj = βi,0

HA : βj ̸= βi,0

H0 is the null hypothesis. The hypothesized value of βi is denoted βi,0. The alternative hypothesis is
denoted by HA. One of the two situations must occur. This is called a “two-sided” hypothesis test: the
null hypothesis is wrong if βi is either “too small” or “too big” relative to the hypothesized value.

The hypothesis test concludes with either: (i) “reject” H0 in favour of HA, or (ii) “fail to reject”
H0. We should never say that we “accept” either of the hypotheses: we either have evidence to reject
H0, or we do not have enough evidence to reject H0.

The decision to “reject” or “fail to reject” H0 may begin by the researcher subjectively deciding on
a significance level and then doing one or more of the following:

• Calculating a (p-value) and comparing it to the significance level.
• Seeing whether or not βj,0 is contained in a confidence interval.
• Calculating a test statistic and seeing if it exceeds a critical value.

To proceed, we must first have an estimator for the standard error of the estimator being used to assess
the hypothesis. For example, the t-test statistic for testing:

H0 : βi = 0
HA : βi ̸= 0

is:

t = bi

ˆs.e.(bi)

We need this quantity ˆs.e.(bi), which is called the estimated standard error.

6.1 Estimating σ2

We now know a lot about estimating β. There’s another parameter in the regression model, σ2 – the
variance of each ϵi. You are likely familiar with a t-test or an F -test. In order to perform a hypothesis
test, using a t-test statistic for example, we need to estimate σ2 so that we can get an estimate for the
covariance matrix of the LS estimator: V (b) = σ2 (X ′X)−1.
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Let’s derive an estimator for σ2. Begin by noting that

σ2 = var (ϵi) = E
[
(ϵi − E (ϵi))2

]
= E

(
ϵ2
i

)
,

due to assumption A.3. The sample counterpart to this population parameter (σ2) is the sample average
of the “residuals”:

σ̂2 = 1
n

n∑
i=1

e2
i = 1

n
e′e,

which is the method of moments, and the maximum likelihood estimator. However, there is a distortion
in this estimator of σ2. Although the mean of the ei’s is zero (if there is an intercept in the model), not
all of ei’s are independent of each other: only (n − k) of them are.

We should consider what properties σ̂2 has as an estimator of σ2, before we use it. Is this a good
estimator? What properties of the LS estimator did we evaluate? We will write e′e in terms of only ϵ
(which we have made assumptions about), and then derive its expected value:

e = (y − ŷ) = (y − Xb) = y − X
(
X ′X

)−1
X ′y = My

where

M = In − X
(
X ′X

)−1
X ′ ; idempotent, and MX = 0

So,

e = My = M(Xβ + ϵ) = Mϵ

and

e′e = (Mϵ)′(Mϵ) = ϵ′Mϵ ; a scalar

From this, it can be shown that:

E
(
e′e
)

= E
[
ϵ′Mϵ

]
= E

[
tr
(
ϵ′Mϵ

)]
= E

[
tr
(
Mϵϵ′)]

= tr
[
ME

(
ϵϵ′)] = tr

[
Mσ2In

]
= σ2 tr(M)

= σ2(n − k)

We will not cover the trace operator (tr), we will not discuss why tr(M) = σ2(n − k), and you do
not need to know how to obtain this expectation. However, you need to be aware that an important
step in considering whether an estimator should be used is to examine its bias, and in the case of
σ̂2:

E
[
σ̂2
]

= E

[ 1
n

e′e

]
= 1

n
(n − k)σ2 < σ2

The method of moments and maximum likelihood estimator, σ̂2, is biased.

It is easy to convert this biased estimator to an unbiased one:

s2 = 1
(n − k)e′e

Some notes:
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• (n − k) is the “degrees of freedom” – number of independent sources of information in the n
residuals (the ei’s).

• We can use s as an estimator of σ, but it is a biased estimator. Even though it is biased, s is
typically used in practice as the bias is small.

• s is called the “standard error of the regression”, or the “standard error of estimate”.
• s2 is a statistic. It has its own sampling distribution, etc.

Let’s see one immediate application of s2 and s. Recall the sampling distribution for the LS estimator,
b:

b ∼ N
[
β, σ2 (X ′X

)−1
]

So, the variance of the ith LS estimator is the ith diagonal of the covariance matrix of b: var (bi) =
σ2
[
(X ′X)−1

]
ii

, but σ2 is unobservable. If we want to report the variability associated with bi as an
estimator of βi, we need to use an estimator of σ2. The estimated variance of the ith LS estimator is
then:

v̂ar (bi) = s2
[(

X ′X
)−1

]
ii

The square-root of the above is called the “standard error” of bi. This quantity will be very important
when it comes to constructing interval estimates of our regression coefficients, and when we construct
tests of hypotheses about these coefficients.

Example 6.1 — Standard errors in R. Start by setting the random seed and sample size, and then
generate some data:

set.seed(7010)
n <- 10
x <- rnorm(n)
y <- rnorm(n)

Estimate and summarize a model:

mod <- lm(y ~ x)
summary(mod)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 0.2472 0.3734 0.662 0.526
x -0.2455 0.6348 -0.387 0.709

Residual standard error: 1.178 on 8 degrees of freedom
Multiple R- squared : 0.01835 , Adjusted R- squared : -0.1044
F- statistic : 0.1495 on 1 and 8 DF , p-value: 0.7091

R is reporting the standard errors of b1 and b2 as 0.3734 and 0.6348 respectively. We will see one way
how statistical packages can calculate these numbers. Start by getting the estimate s2:

s2 <- sum(mod$residuals ^ 2) / (n - 2)

Note that k = 2 above. If we take the square root, we get the “residual standard error” reported in
the R output above:

sqrt(s2)

[1] 1.178469
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Next we will calculate the V (b) matrix. Start by arranging the x data into a matrix (and take a look
at the X matrix):

X <- matrix(c(rep(1, n), x), n, 2)
X

[,1] [,2]
[1,] 1 -0.2214732
[2,] 1 0.6051370
[3,] 1 0.7208573
[4,] 1 -0.2230900
[5,] 1 -0.2662395
[6,] 1 -1.0890823
[7,] 1 -0.5655553
[8,] 1 0.5330395
[9,] 1 0.6225352

[10 ,] 1 -0.4755066

The s2(X ′X)−1 matrix is then:

s2 * solve(t(X) %*% X)

[,1] [,2]
[1,] 0.13939930 0.01448197
[2,] 0.01448197 0.40297318

I have used the solve() function to find the inverse. Taking the square root of any of the diagonal
elements gives the standard error reported in the summary() output above:

sqrt(s2 * solve(t(X) %*% X))[1, 1]

[1] 0.3733622

6.2 Hypothesis testing and confidence intervals
Hypothesis testing, and confidence intervals, allow us to quantify the uncertainty around our “point”
estimate. For example, a value of b2 = 2.1 million may seem very far from a value of β2 = 0; but this
all depends on the variability of the estimator b2. In order to assess the variability of the estimator
in relation to a point estimate, we’ll need the full sampling distributions of both b and s2. Note that
assumption A.6 will be particularly important in what follows. Recall that:

b ∼ N
[
β, σ2 (X ′X

)−1
]

and that because the marginal distribution from the multivariate-Normal distribution is still Normal:

bi ∼ N
[
βi, σ2

((
X ′X

)−1
)

ii

]
Suppose that your null hypothesis is H0 : β2,0 = 01 (you think that x2 has zero effect on y), but that
the value you estimate for β2 is b2 = 2, 100, 000. What can guide you in your decision to reject or
fail-to-reject H0? One possibility is to use a p-value.

Definition 6.1 — p-value. The probability of obtaining an estimate more adverse to the null hypothesis,
compared to the estimate just obtained, provided the null hypothesis is true.

1The 0 in the subscript (after the comma) is to denote that this is the value for the parameter under the null hypothesis.
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That is, the p-value provides the probability that “things could be worse”, in terms of the currently
observed discrepancy between the null and the estimated value. If this probability is subjectively large,
then that would indicate that the we should fail-to-reject the null hypothesis (and vice versa).

What is the p-value for the above example? Pr(b2 > 2.1mil) can be easily found using the Normal
distribution, with a mean of β2,0 and a variance of σ2

(
(X ′X)−1

)
ii

. Then, if the alternative hypothesis
is two-sided, Pr(b2 > 2.1mil) is multiplied by two (most alternative hypotheses in econometrics are
two-sided).

6.2.1 z-test statistic
Calculating a probability from the Normal distribution requires integrating under the Normal curve
for some mean and variance, which presents a different integral for each hypothesis test, since the
mean of the Normal distribution is determined by H0 and the variance by the particular data set.
Integrating under a Normal distribution is not an issue given modern computers, but it was an issue
over a hundred years ago before the computer. In order to avoid having to integrate for each hypothesis
test, instead we could: (i) standardize the estimator used in the null hypothesis so that it follows an
N ∼ (0, 1) distribution; (ii) integrate many times under the standard Normal N ∼ (0, 1) distribution
and tabulate some probabilities; (iii) obtain our p-value from this table. Note that this process is
needlessly complicated given the modern computer, but is ingrained in statistics and still used.

Using properties of the mean and variance2, we can standardize bi:

zi = (bi − βi,0)√
σ2
[
(X ′X)−1

]
ii

∼ N(0, 1)

All we are accomplishing here is creating a test statistic; altering the distribution of bi to one that is
standard Normal, provided the null hypothesis is true. If H0 is false, then the mean of zi is not
0. Calculating a standardized test statistic is a very common way of obtaining a p-value, but it is not
necessary. To see that standardization is not needed to obtain the p-value, note that Pr(zi > 0) =
Pr(bi > βi,0).

6.2.2 t-test statistic
The z-statistic typically can’t be calculated in practice, since the value for σ2 is usually unknown. We
can’t use zi directly to draw inferences about bi. Instead, we will have to replace the unknown σ2 with
an estimator: s2 for example. The major issue is that when we introduce a random variable into the
denominator of the z-statistic, we change the distribution to something that is not Normal. Given all
of our assumptions A.1 to A.6, it turns out that the test statistics is transformed so that it follows the
t-distribution. We will not fully prove this, but instead sketch out the proof.

• Definition: let z1, z2, . . . , zm be independent N(0, 1) random variables. Then the quantity
∑m

i=1
(
z2

i

)
has a Chi-square distribution with m degrees of freedom, χ2

m.
• Note: e′e = ϵ′Mϵ is a sum of squared Normal variables.
• Note: not all of the e are independent, only (n − k) of them. That is, the degrees of freedom in e

is (n − k).
• This leads to the distribution for s2:

(n − k)s2

σ2 ∼ χ2
(n−k)

• Definition: let z ∼ N(0, 1), and let x ∼ χ2
v, where z and x are independent. Then the statistic,

t = z/
√

x/v follows the Student’s t-distribution, with “v” degrees of freedom.
2(i) E[c + Y ] = c + E[Y ]; (ii): var[cY ] = c2 var[Y ], where c is a constant and Y is a random variable
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• Examine the formula for the t-statistic, and notice it has a Normal variable in the numerator (bi)
and the square root of a chi-square variable in the denominator (s2). With some re-arranging, it
can be shown that this statistic matches the definition for a t-distribution.

ti = (bi − βi,0)√
s2
[
(X ′X)−1

]
ii

= (bi − βi,0)
ŝ.e.(bi)

∼ t(n−k)

• Finally, note that for large n, the t-distribution becomes the standard Normal distribution.

Example 6.2 — Simple hypothesis test. Suppose the estimated model is:

ŷ = 1.4 + 0.25x2 + 0.6x3
(0.7) (0.1) (1.4)

with

H0 : β2 = 0 vs. HA : β2 ̸= 0.

The t-statistic associated with this hypothesis test is:

t =
[

b2 − β2
s.e. (b2)

]
=
[0.25 − 0

0.1

]
= 2.5

Now we must determine the p-value, or compare this “2.5” to a critical value. Suppose that n = 20.
Then, t ∼ t(17). The p-value can be easily obtained from R using

2 * (1 - pt(2.5, 17))

[1] 0.02294781

What is the interpretation of 0.02295 here? If H0 is true, there is only a 2.3% chance of obtaining a
b2 that is “further away” from 0 then what was just observed (a “distance” of 0.25). Things can’t get
much worse. Either: (i) we obtained a strange sample, or (ii) H0 is false. With a significance level of
α = 5%, we would reject H0.

6.2.3 Critical values
We could also perform this hypothesis test using a critical value. Recall that for a significance level
of 5%, the critical value from the Normal distribution is 1.96. This just means that if you obtain
|zi| > 1.96, you will obtain a p-value less than 5%. So, we could compare t = 2.5 to 1.96, except the
sample size isn’t large enough!

6.2.4 Confidence Intervals
We can also use our t-statistic to construct a confidence interval for βi. Note that if H0 is true, then
the probability that the t-statistic lies within the α critical range is (1 − α):

Pr. [−tc ≤ t ≤ tc] = (1 − α).

For example, if n is large and α = 0.05, then there is a 0.95 probability that t lies within the values -1.96
and 1.96, provided H0 is true. Now, substitute the formula for t into the above probability statement:

Pr .

[
−tc ≤

[
bi − βi

s.e. (bi)

]
≤ tc

]
= (1 − α),
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and now solve the inequality so that βi is in the centre:

Pr . [−tc × s.e. (bi) ≤ (bi − βi) ≤ tc × s.e. (bi)] = (1 − α)
Pr . [−bi − tc × s.e. (bi) ≤ (−βi) ≤ −bi + tc × s.e. (bi)] = (1 − α)
Pr . [bi + tc × s.e. (bi) ≥ βi ≥ bi − tc × s.e. (bi)] = (1 − α)
Pr . [bi − tc × s.e. (bi) ≤ βi ≤ bi + tc × s.e. (bi)] = (1 − α)

Interpretation of the confidence interval
[bi − tc × s.e. (bi) , bi + tc × s.e. (bi)] ,

is random. The parameter, βi is fixed, but unknown.

• If we were to take a sample of n observations, and construct such an interval, and then repeat this
exercise many, many times, then 100(1 − α)% of such intervals would cover the true value of βi.

• Such an interval contains all the values for the parameter under the null hypothesis, that will not
be rejected.

If we just construct an interval, for our given sample of data, we’ll never know if this particular interval
covers βi, or not.

Figure 6.1: Each hypothetical sample of size n that we could draw (sample A, sample B, etc.) provides
a 95% confidence interval that has a 95% probability of containing the true population β. In practice,
we will only draw one sample from the population, and calculate one interval.

6.3 Some Properties of Tests
Classical hypothesis testing:

• Assume that H0 is true
• Compute value of test statistic using random sample of data
• Determine distribution of the test statistic (when H0 is true)
• Check if observed value of test statistic is likely to occur, if H0 is true
• If this event is sufficiently unlikely, then reject H0 (in favour of HA)

Note:

1. Can never accept H0. Why not?
2. What constitutes “unlikely” – subjective?
3. There are two types of errors we might incur with this process.

Definition 6.2 — Type I and II error.

• Type I Error: Reject H0 when in fact it is true.
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• Type II Error: Do not reject H0 when in fact it is false.

The probability of a type I error is denoted by α, and is also the significance level of the test
(sometimes also called the “size” of the test). The significance level of the test is a predetermined
maximum p-value before which the null hypothesis is rejected. That is, if the p-value is less than α, H0
is rejected. In deciding on this maximum acceptable p-value, we are also determining the type I error.
Even when the null hypothesis is true, there is an α% probability of drawing an “extreme” sample that
will lead to a incorrect rejection of H0.

The probability of a type II error is sometimes denoted by β, but this is less useful of a construct
than α. This is because β typically will not be known. Why is this? β will depend on how H0 is false.
Usually, there are many ways. For example, H0 could be false because the true parameter value is very
far away from the value under the null; or it could be false because the truth is only a little bit different
from the null. β will be smaller in the former situation relative to the latter situation.

Although the β of a test is typically unknown and not useful in practice, the concept is theoretically
useful for designing or choosing a testing procedure. You are likely familiar with the t-test and F -test,
but why do we use these tests? It is because, under certain assumptions, these tests have desirable
properties. Similar to how we want to use an estimator that is unbiased and efficient, we want to
use a test that is powerful, unbiased, and consistent. Note, however, that the properties unbiased and
consistent have different meanings depending on whether we are talking about a test or an estimator.

Definition 6.3 — Power. The “power” of a test is Pr.[Reject H0|H0 is false]. So, Power = 1 −
Pr.[Do not reject H0|H0 is false] = 1 − β.

Depending on the way that H0 is false, we typically have a Power Curve. For a fixed value of α,
this curve plots Power against parameter value(s). We want our tests to have high power, and we want
the power of our tests to increase as H0 becomes increasingly false. Now let’s consider some desirable
properties for a test.

Property 1 - UMP
Consider a fixed sample size, n, and a fixed significance level, α. Then, a test is “Uniformly Most
Powerful” if its power exceeds (or is no less than) that of any other test, for all possible ways that H0
could be false.

Property 2 - consistent (test)
Consider a fixed significance level, α. Then, a test is “consistent” if its Power → 1, as n → ∞, for all
possible ways that H0 is false.

Property 3 - unbiased (test)
Consider a fixed sample size, n, and a fixed significance level, α. Then, a test is said to be “unbiased”
if its power never falls below the significance level.

Property 4 - LMP
Consider a fixed sample size, n, and a fixed significance level, α. Then, a test is said to be “Locally
Most Powerful” if the slope of its Power curve is greater than the slope of the power curves of all other
size α tests, in a neighbourhood of H0.
Note:

• For many testing problems, no UMP test exists. This is why LMP tests are important.
• Why do we use our “t-test” in the regression model? Because it has properties 1 - 3 against one-

sided alternative hypotheses, and has properties 2 - 4 against two-sided alternatives. Similar to
how the LS estimator is “best” among other estimation alternatives (given certain assumptions),
so is the t-test “best” among other potential testing strategies.
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6.4 Exercises
1. Given that E

[
σ̂2] = (n−k)σ2

n , prove that s2 is unbiased.
2. Explain why the t-statistic follows a t-distribution and not a Normal distribution.
3. Using the R output from Example 6.1, calculate the 95% confidence interval around the estimated

slope parameter, and test the hypothesis that this parameter is equal to zero.
4. Which of our assumptions are required in order for the t-test to be appropriate?
5. What are some desirable statistical properties for a test to have?



Chapter 7

Asymptotic Properties of Various
Estimators

So far our results apply for any finite sample size n. In more general models we often can’t obtain exact
results for estimators’ properties (for example, models that are estimated via maximum likelihood. In
these cases, we might instead consider the estimator’s properties as n → ∞, as a way of “approximating”
results. Asymptotic properties of estimators are also of interest in their own right: inferential procedures
should “work well” when we have lots of data. We have already seen one example of an asymptotic
property: hypothesis tests that are “consistent”.

Definition 7.1 — Weak consistency. An estimator, θ̂, for θ, is said to be (weakly) consistent if

lim
n→∞

{
Pr .

[∣∣∣θ̂n − θ
∣∣∣ < ϵ

]}
= 1

for all ϵ > 0.

A sufficient condition for weak consistency to hold is the stronger mean-square consistency:

Definition 7.2 — Mean-square consistency. An estimator, θ̂, for θ, is said to be mean-square consistent
if its bias and variance go to zero as n goes to infinity:

Bias
(
θ̂n

)
→ 0; as n → ∞,

V
(
θ̂n

)
→ 0; as n → ∞.

Mean-square consistency is often useful for checking consistency, since it is easier to prove than weak
consistency.

If θ̂ is weakly consistent for θ, we say that the “probability limit” of θ̂ equals θ. We denote this by
using the “plim” operator, and we write:

plim
(
θ̂n

)
= θ or, θ̂n

p→ θ

Loosely speaking, consistency means that, given an infinitely large sample of data, the estimator
provides the true parameter value exactly (there is zero bias and variance).
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Example 7.1 — Consistency of the sample average. Let xi ∼
[
µ, σ2] be a random i.i.d. variable.

x̄ = 1
n

n∑
i=1

xi

E[x̄] = 1
n

n∑
i=1

E (xi) = 1
n

(nµ) = µ (unbiased, for all n)

var[x̄] = 1
n2 var

[
n∑

i=1
xi

]
= 1

n2

n∑
i=1

var (xi)

= 1
n2

(
nσ2

)
= σ2/n

So, x̄ is an unbiased estimator of µ, and limn→∞{var[x̄]} = 0. This implies that x̄ is both a mean-
square consistent, and a weakly consistent estimator of µ.

Note:

• If an estimator is inconsistent, then it is a pretty useless estimator!
• There are many situations in which our LS estimator is inconsistent! For example, when:

– there is an “omitted” variable that is relevant, and that is correlated to a variable included
in the estimated model;

– there is simultaneous causality;
– a time series model includes lags of the dependent variable, and the errors are autocorrelated.

7.1 Slutsky’s Theorem
Let plim

(
θ̂n

)
= c, and let f(.) be any continuous function. Then, plim

[
f
(
θ̂n

)]
= f(c). For example:

plim
(1

θ̂

)
= 1

c

where θ̂ and c are scalars;

plim
(
eθ̂
)

= ec

where θ̂ and c are vectors;

plim
(
Θ̂−1

)
= C−1

where Θ̂ and C are matrices. Slutsky’s Theorem is a very useful result: the “plim” operator can be
used very flexibly.

7.2 Asymptotic Properties of LS Estimator
Consider LS estimator of β under our standard assumptions, in the “large n” asymptotic case.

• Can relax some assumptions:
i Don’t need Normality assumption for the error term of our model.
ii Columns of X can be random, just assume that {x′

i, ϵi} is a random and independent se-
quence; i = 1, 2, 3, . . ..

iii The above assumption implies that plim
[
n−1X ′ϵ

]
= 0.
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• Amend (extend) our assumption about X having full column rank. Assume instead that plim
[
n−1X ′X

]
=

Q, where Q is a finite, positive-definite and symmetric (k × k) matrix that is unobservable.

Question: In words, what are we assuming about the elements of X, as n increases without limit?

Theorem: The LS estimator of β is weakly consistent.
Proof:

b =
(
X ′X

)−1
X ′y =

(
X ′X

)−1
X ′(Xβ + ϵ)

= β +
(
X ′X

)
X ′ϵ

= β +
[ 1

n

(
X ′X

)]−1 [ 1
n

X ′ϵ

]
.

If we now apply Slutsky’s Theorem repeatedly, we have:

plim(b) = β + Q−10 = β

We can also show that s2 is a consistent estimator for σ2. There are at least two ways to do this (each
uses different assumptions). First, assume the errors are Normally distributed, and get a strong result.
We can also relax this assumption and get a weaker result.

Theorem: If the regression model errors are Normally distributed, then s2 is a mean-square consistent
estimator for σ2.
Proof: If the errors are Normal, then we know that

(n − k)s2

σ2 ∼ χ2
(n−k)

The mean and variance of a χ2 distributed random variable are:

E
[
χ2

(n−k)

]
= (n − k)

var
[
χ2

(n−k)

]
= 2(n − k)

So,

E
(
s2
)

=
σ2E

[
χ2

(n−k)

]
n − k

= σ2 ; unbiased

and

var
[

(n − k)s2

σ2

]
= 2(n − k)

[
(n − k)2

σ4

]
var

(
s2
)

= 2(n − k)
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var
(
s2
)

= 2σ4/(n − k)

So, var
(
s2) → 0, as n → ∞, and the estimator is unbiased. This implies that s2 is a mean-square

consistent estimator for σ2. (This implies that it is also a weakly consistent estimator.)

• With the addition of the (relatively) strong assumption of Normally distributed errors, we get the
(relatively) strong result.

• Note that σ̂2 = (e′e) /n is also a consistent estimator, even though it is biased.

What can we say if we relax the assumption of Normality? We need a preliminary result to help us
(Khintchine’s theorem; or the Weak Law of Large Numbers).

7.2.1 Khinchin’s Theorem; Weak Law of Large Numbers (WLLN)
Suppose that {xi}n

i=1 is a sequence of random variables that are uncorrelated, and all drawn from the
same distribution with a finite mean, µ, and a finite variance, σ2. Then, plim(x̄) = µ. Khinchin’s
theorem says that a sample average of i.i.d. variables is at least weakly consistent. We can use this
result to establish the consistency of s2.

Theorem 7.1 — Weak consistency of s2. In our regression model, s2 is a weakly consistent estimator
for σ2. (Notice that this also means that σ̂2 is a weakly consistent estimator, so start with the latter
estimator.)
Proof :

σ̂2 =
(

e′e

n

)
= 1

n

n∑
i=1

e2
i

= 1
n

(Mϵ)′(Mϵ) = 1
n

ϵ′Mϵ

= 1
n

[
ϵ′ϵ − ϵ′X

(
X ′X

)−1
X ′ϵ

]
=
[( 1

n
ϵ′ϵ

)
−
( 1

n
ϵ′X

)( 1
n

X ′X

)−1 ( 1
n

X ′ϵ

)]

So, plim
(
σ̂2) = plim

(
1
nϵ′ϵ

)
−0′Q−10 = plim

[
1
n

∑n
i=1 ϵ2

i

]
(if the errors are not autocorrelated, neither

are the squared values). Also, E
[
ϵ2
i

]
= var . (ϵi) = σ2. By Khintchine’s Theorem, we immediately

have the result:

plim
(
σ̂2
)

= σ2

and

plim
(
s2
)

= σ2

Relaxing the assumption of Normally distributed errors led to a weaker result for the consistent esti-
mation of the error variance.

7.3 Asymptotic efficiency
Suppose we want to compare the (large n) asymptotic behaviour of our LS estimators with those of
other potential estimators. These other estimators will presumably also be consistent. This means that
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in each case the sampling distributions of the estimators collapse to a “spike”, located exactly at the
true parameter values. So, how can we compare such estimators when n is very large: aren’t they
indistinguishable? If the limiting density of any consistent estimator is a degenerate “spike”, it will
have zero variance, in the limit. Can we still compare large-sample variances of consistent estimators?
In other words, is it meaningful to think about the concept of asymptotic efficiency?

The key to asymptotic efficiency is to “control” for the fact that the distribution of any consistent
estimator is “collapsing”, as n → ∞.

The rate at which the distribution collapses is crucially important. This is probably best understood
by considering an example.

Example 7.2 Let {xi}n
i=1 be a random sample from a population with mean and variance

[
µ, σ2]. We

know from a previous example that:

E[x̄] = µ; var[x̄] = σ2/n

Observe how var[x̄] → 0 as n → ∞ (the sampling distribution collapses to a “spike” at the true
parameter value). Now, construct: y =

√
n(x̄ − µ). Note that:

E(y) =
√

n(E(x̄) − µ) = 0

and

var[y] = (
√

n)2 var(x̄ − µ) = n var(x̄) = σ2

The scaling we’ve used results in a finite, non-zero, variance. E(y) = 0, and var[y] = σ2; unchanged as
n → ∞. So, y =

√
n(x̄ − µ) has a well-defined “limiting” (asymptotic) distribution. The asymptotic

mean of y is zero, and the asymptotic variance of y is σ2. Why did we scale by
√

n, and not (say), by
n itself?

In fact, because we had independent xi’s (random sampling), we have the additional result that
y =

√
n(x̄ − µ) d→ N

[
0, σ2], the Lindeberg-Lévy Central Limit Theorem.

Definition 7.3 Let θ̂ and θ̃ be two consistent estimator of θ; and suppose that
√

n(θ̂ − θ) d→
[
0, σ2

]
, and

√
n(θ̃ − θ) d→

[
0, φ2

]
.

Then θ̂ is “asymptotically efficient” relative to θ̃ if σ2 < φ2. In the case where θ is a vector, θ̂ is
“asymptotically efficient” relative to θ̃ if ∆ = asy .V (θ̃) − asy .V (θ̂) is positive definite.

7.4 Asymptotic Distribution of the LS Estimator
Let’s consider the full asymptotic distribution of the LS estimator, b, for β in our linear regression
model. We’ll actually have to consider the behaviour of

√
n(b − β):

√
n(b − β) =

√
n
[(

X ′X
)−1

X ′ϵ
]

=
[ 1

n

(
X ′X

)]−1 ( 1√
n

X ′ϵ

)
It can be shown, by the Lindeberg-Feller Central Limit Theorem, that( 1√

n
X ′ϵ

)
d→ N

[
0, σ2Q

]
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where Q = plim
[

1
n (X ′X)

]
. So, the asymptotic covariance matrix of

√
n(b − β) is

plim
[ 1

n

(
X ′X

)]−1 (
σ2Q

)
plim

[ 1
n

(
X ′X

)]−1
= σ2Q−1.

In full, the asymptotic distribution of b is correctly stated by saying that:

√
n(b − β) d→ N

[
0, σ2Q−1

]
The asymptotic covariance matrix is unobservable, for two reasons:

1. σ2 is typically unknown.
2. Q is unobservable.

• We can estimate σ2 consistently, using s2.
• To estimate σ2Q−1 consistently, we can use ns2 (X ′X)−1:

plim
[
ns2 (X ′X

)−1
]

= plim
(
s2
)

plim
[ 1

n

(
X ′X

)]−1
= σ2Q−1

The square roots of the diagonal elements of ns2 (X ′X)−1 are the asymptotic standard errors for the
elements of

√
n(b − β). Loosely speaking, the asymptotic covariance matrix for b itself is s2 (X ′X)−1;

and the square roots of the diagonal elements of this matrix are the asymptotic standard errors for the
bi’s themselves.

7.5 Exercises
1. Prove that the LS estimator is consistent, stating any assumptions that you use.
2. Provide an example of when the LS estimator is inconsistent.
3. θ̃ and θ̂ are both unbiased estimators for θ. The variances of the two estimators are:

var
(
θ̃
)

= 2σ2

n

and

var
(
θ̂
)

= σ2

2n

(a) Are the estimators consistent?
(b) What are the asymptotic distributions of the two estimators?
(c) Which estimator is asymptotically more efficient?

4. Given that plim(σ̂2) = σ2, prove that s2 is also consistent.



Chapter 8

Instrumental Variables

We have been assuming either that the columns of X are non-random; or that the sequence {xi, ϵi} is
independent. Often, neither of these assumptions are tenable. This implies that plim

(
1
nX ′ϵ

)
̸= 0, and

then the LS estimator is inconsistent.

Prove that the LS estimator is inconsistent when plim
(

1
nX ′ϵ

)
̸= 0.

Inconsistency of the LS estimator is a serious issue. Inconsistency means that the estimation results
can be wrong, and that no matter how large n is, the problem does not go away. If the LS estimator
is inconsistent, it should not be used. In this chapter, we motivate the situation through a missing
variable that is correlated with a variable(s) in the X matrix. Then, we discuss instrumental variable
(IV) estimation as a potential solution to the problem.

8.1 Correlation between the error term and regressors
There are several ways in which to motivate the situation where X and ϵ are correlated. Davidson and
MacKinnon (2004) discuss “Errors in Variables” (pg. 312), and “Simultaneous Equations” (pg. 314).
The very problem which motivated IV estimation is the simultaneity of price and quantity through
demand and supply equations in a competitive market. For example, a linear model of demand and
supply is:

qi = γdpi + xd
i βd + ϵd

i (8.1)

qi = γspi + xs
i βs + ϵs

i (8.2)

where equation 8.1 is the demand function and equation 8.2 is the supply function, the x variables are
predetermined or exogenous, and the γ are the slopes of the demand or supply curves. There are two
equations in two unknowns (pi and qi), and it is easy to solve for the equilibrium values by, for example,
solving for pi in equation 8.2 and substituting into equation 8.1. In doing so, we see that the solutions
for pi and qi depends not only on both xd

i and xs
i , but also on both ϵd

i and ϵs
i . In any linear simultaneous

equations model, the endogenous variables are necessarily correlated with the error terms. This is a
violation of A.5, leading to inconsistency of the LS estimator.

Another way to motivate a situation where X and ϵ are dependent, is to consider omitted, unob-
servable, or missing variables, M . Consider also that these missing variables are correlated with the
regressors X and the dependent variable y. The true population model is:

y = Xβ + Mγ + ϵ

Since M is unobservable, the observable model that we can estimate is:

y = Xβ + ϵ (8.3)
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Notice that in 8.3, ϵ contains Mγ, so that X and ϵ are not independent (X is endogenous), since
X and M are correlated.

Prove that OLS is biased and inconsistent under this data generating process.

In such cases of endogeneity, we want a safe (consistent) way of estimating β. One general family of
such estimators is the family of Instrumental Variables (IV) estimators.

8.2 Instrumental variable
A variable(s), Z, qualifies as an instrument if it satisfies two conditions.

An instrumental variable, Z, must be:

1. Correlated with the endogenous variables X.
• This is sometimes called the “relevance” of an IV.
• This condition can be tested.

2. Uncorrelated with the error term, or equivalently, uncorrelated with the dependent variable other
than through its correlation with X.

• This is sometimes called the “exclusion” restriction.
• This restriction cannot be easily tested.

The “exclusion” restriction implies k moment conditions, which allows us to derive the IV estimator:

E(Z ′ϵ) = 0

or

E(Z ′ϵ) = E(Z ′y − Z ′Xβ) = E(Z ′y) − E(Z ′X)β = 0

Solving the k moment conditions for β, replacing the expected values with sample averages, yields the
IV estimator:

b̂IV =
(

n−1
n∑

i=1
z′

ixi

)−1(
n−1

n∑
i=1

z′
iyi

)

or, in matrix notation:

bIV =
(
Z ′X

)−1
Z ′y

In general, this estimator is biased. We can show it is consistent, however:

y = Xβ + ϵ

plim
(

1
nX ′X

)
= Q ; p.d. and finite

plim
(

1
nX ′ϵ

)
= γ ̸= 0

Full rank of the instrument matrix, the relevancy of the I.V., and the exclusion restriction imply
respectively that :

plim
(

1
nZ ′Z

)
= QZZ ; p.d. and finite

plim
(

1
nZ ′X

)
= QZX ; p.d. and finite

plim
(

1
nZ ′ϵ

)
= 0
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Then, the IV estimator is consistent:

bIV =
(
Z ′X

)−1
Z ′y =

(
Z ′X

)−1
Z ′(Xβ + ϵ)

=
(
Z ′X

)−1
Z ′Xβ +

(
Z ′X

)−1
Z ′ϵ

= β +
(
Z ′X

)−1
Z ′ϵ

= β +
( 1

n
Z ′X

)−1 ( 1
n

Z ′ϵ

)
and so:

plim (bIV ) = β +
[
plim

( 1
n

Z ′X

)]−1
plim

( 1
n

Z ′ϵ

)
= β + Q−1

ZX0 = β

Note that choosing different Z matrices generates different members of the IV family.
Although we won’t derive the full asymptotic distribution of the IV estimator, note that it can be

expressed as:
√

n (bIV − β) d→ N
[
0, σ2Q−1

ZXQZZQ−1
XZ

]
where QXZ = Q′

ZX .

Questions: How would you estimate this asymptotic covariance matrix? How would you estimate the
covariance matrix for bIV ?

8.3 Interpreting IV as two-stage least squares (2SLS)
IV estimation is also called two-stage least squares. Before modern computers, IV estimates were
calculated by two (or more) least squares estimations. Two stage least squares offers an intuitive
interpretation of the IV estimator. The idea behind IV estimation is that the instrument Z may be
used to “extract” the “clean” variation from the endogenous variables X. When X is endogenous, a
change in X is associated with a change in ϵ, so it is impossible to identify how much of the observed
change in X led to the observed change in y. However, if we could extract the variation in X that is
uncorrelated with variation in ϵ, then we could use this clean variation to estimate β consistently. If
we find an instrument Z that is correlated with X but uncorrelated with ϵ, then we can use changes in
X due to changes in Z only, to extract this clean variation.

1st stage of 2SLS
In the first stage, we regress each column of X on Z using LS, and get X̂. That is, we get X̂ = PZX.

• X̂ = PZX contains the variation in X due to Z only.
• PZX is not correlated with ϵ.
• Recall that X̂ = PZX = Z (Z ′Z)−1 Z ′X.

Question: Why is PZX uncorrelated with ϵ?

2nd stage of 2SLS
In the second stage, we estimate the model: y = X̂β + ϵ = PZXβ + ϵ, using LS. Applying the LS
formula to this model, we get:

bIV =
[
X ′Z

(
Z ′Z

)−1
Z ′X

]−1
X ′Z

(
Z ′Z

)−1
Z ′y

or just:
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bIV =
[
X ′PZX

]−1
X ′PZy

In fact, this is the Generalized I.V. estimator of β. We can actually use more instruments than regressors
(the “Over-Identified” case). Why might we want to do this? (Efficiency). Note that if X and Z have
the same dimensions, then the generalized estimator collapses to the simple one.

Now, let’s check the consistency of this Generalized IV estimator.

bIV =
[
X ′PZX

]−1
X ′PZy =

[
X ′PZX

]−1
X ′PZ(Xβ + ϵ)

=
[
X ′PZX

]−1
X ′PZXβ +

[
X ′PZX

]−1
X ′PZϵ

= β +
[
X ′Z

(
Z ′Z

)−1
Z ′X

]−1
X ′Z

(
Z ′Z

)−1
Z ′ϵ

So,

bIV = β +
[( 1

n
X ′Z

)( 1
n

Z ′Z

)−1 ( 1
n

Z ′X

)]−1 ( 1
n

X ′Z

)( 1
n

Z ′Z

)−1 ( 1
n

Z ′ϵ

)
.

Modify our assumptions. We have a (random) (n × L) matrix, Z, such that:

1. plim
(

1
nZ ′Z

)
= QZZ ; (L × L), p.s.d. and finite

2. plim
(

1
nZ ′X

)
= QZX ; (L × k), rank = k, and finite

3. plim
(

1
nZ ′ϵ

)
= 0 ; (L × 1)

So,

plim (bIV ) = β +
[
QXZQ−1

ZZQZX

]−1
QXZQ−1

ZZ0 = β ; consistent

Similar to before, a consistent estimator of σ2 is

s2
IV = (y − XbIV )′ (y − XbIV ) /n

• Recall that each choice of Z leads to a different IV estimator.
• Z must be chosen in way that ensures consistency of the IV estimator.
• How might we choose a suitable set of instruments, in practice?
• If we have several “valid” sets of instruments, how might we choose between them?

For the “simple” IV regression model, recall that:
√

n (bIV − β) d→ N
[
0, σ2Q−1

ZXQZZQ−1
XZ

]
so if k = 1,

QZZ = plim
(

n−1
n∑

i=1
z2

i

)
and

QZX = plim
(

n−1
n∑

i=1
zixi

)
= QXZ

The asymptotic efficiency of bIV will be higher, the more highly correlated are Z and X, asymptot-
ically. We need to find instruments that are uncorrelated with the errors, but highly correlated with
the regressors (asymptotically). This is not easy to do! A good instrument comes from an intimate
understanding of the economics driving the regressor of interest. A good survey of some classic IV
papers may be found here1.
1Angrist, J. D., & Krueger, A. B. (2001). Instrumental variables and the search for identification: From supply and
demand to natural experiments. Journal of Economic perspectives, 15(4), 69-85.

http://economics.mit.edu/files/18
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8.4 IV tests
8.4.1 Testing if IV estimation is needed

This is a good situation to be in: it means you have found a potentially valid instrument! Now, should
you use it? Recall that LS is BLUE, so we should use it where possible. Consider the following.

• Why does LS fail, and when do we need IV?
• If plim

(
1
nX ′ϵ

)
̸= 0.

• We can test to see if this is a problem, and decide if we should use LS or IV.

The Hausman test
We want to test:

H0 : plim
( 1

n
X ′ϵ

)
= 0 vs. HA : plim

( 1
n

X ′ϵ

)
̸= 0

• If we reject H0, we will use IV estimation.
• If we cannot reject H0, we’ll use LS estimation.
• The Hausman test is a general “testing strategy” that can be applied in many situations, not just

for this particular situation!
• Basic idea: construct 2 estimators of β:

1. b (LS estimator): the estimator is both consistent and asymptotically efficient if H0 is true.
2. bIV : the estimator is at least consistent, even if H0 is false.

• If H0 is true, we’d expect (bIV − b) to be “small”, at least for large n, as both estimators are
consistent in that case.

• Hausman shows that V̂ (bIV − b) = V̂ (bIV ) − V̂ (b), if H0 is true.
• So, the test statistic is, H = (bIV − b)′

[
V̂ (bIV ) − V̂ (b)

]−1
(bIV − b).

• H
d→ χ2

I , if H0 is true.
• Here, J is the number of columns in X which may be correlated with the errors, and for which

we need instruments.

Note that there are other asymptotically equivalent tests for the same null and alternative hypothesis;
for example, the Durbin-Wu test.

8.4.2 Testing the exogeneity of instruments
The key assumption that ensures the consistency of IV estimators is that

plim
( 1

n
Z ′ϵ

)
= 0.

This condition involves the unobservable ϵ. It is difficult to test. If there are more instruments than
regressors (the over-identified case) than the Sargan-Hansen or J test may be used. In an applied
economics paper, establishing the exogeneity of the instruments is more likely a matter of arguing for
this key assumption through an understanding of the variables, rather than relying on a statistical test.

8.4.3 Weak instruments
Problems arise if the instruments are not well correlated with the regressors (not relevant).

• These problems go beyond loss of asymptotic efficiency.
• Small-sample bias of IV estimator can be greater than that of LS!
• Sampling distribution of IV estimator can be bi-modal!
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Figure 8.1: Results of LS regression using Card (1993) data. Dependent variable is wage. Notice that
education is statistically insignificant.

Regression Estimates
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• Fortunately, we can again test to see if we have these problems.

Tests aimed at detecting weak instruments revolve around detecting correlation between the instruments
and endogenous regressors. Although it doesn’t quite work, we could draw an analogy to the R2, or the
significance, of the 1st stage in 2SLS.

8.5 Empirical example
Let’s look at data from Card (1993).2

• Data contains wage, years of education, and demographic variables.
• Goal: estimate the returns to education in terms of wage.
• Problem: ability (intelligence) may be correlated with (cause) both wage and education.
• Since ability is unobservable, it is contained in the error term.
• The education variable is then correlated with the error term (endogenous).
• LS estimation of the returns to education may be inconsistent.

First, let’s try LS (see the estimation results visualized in figure 8.1).

library(AER)
library(arm)
data("CollegeDistance")
ls <- lm(wage ~ urban + gender + ethnicity + unemp + education,

data = CollegeDistance)
coefplot(ls)

Now let’s try using distance from college (while attending high school) as an instrument for education.
The argument for the validity of this instrument is that distance from college is correlated with education,
since the closer a student is, the cheaper it is to get an education. For the instrument to be valid, we
require that distance and education be correlated:
2Card, D. (1993). Using geographic variation in college proximity to estimate the return to schooling (No. w4483). National
Bureau of Economic Research.
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summary(lm(education ~ distance, data = CollegeDistance))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 13.93861 0.03290 423.683 < 2e -16 ***
distance -0.07258 0.01127 -6.441 1.3e -10 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

While distance appears to be statistically significant, this isn’t quite enough to test for validity (a testing
problem we won’t address here). Now, let’s estimate the model using IV.
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Figure 8.2: Results of LS and IV (in red) regression using Card (1993) data. Dependent variable is
wage; distance from college is an instrument for education. Notice that the returns to education are
now significant!
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library(ivreg)
iv <- ivreg(wage ~ urban + gender + ethnicity + unemp + education |

urban + gender + ethnicity + unemp + distance,
data = CollegeDistance)

summary(iv, diagnostics = TRUE)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.35903 1.90830 -0.188 0.8508
urbanyes 0.04614 0.06039 0.764 0.4449
genderfemale -0.07075 0.04997 -1.416 0.1569
ethnicityafam -0.22724 0.09863 -2.304 0.0213 *
ethnicityhispanic -0.35129 0.07706 -4.559 5.28e -06 ***
unemp 0.13916 0.00912 15.259 < 2e -16 ***
education 0.64710 0.13594 4.760 1.99e -06 ***

Diagnostic tests:
df1 df2 statistic p-value

Weak instruments 1 4732 50.31 1.51e -12 ***
Wu - Hausman 1 4731 41.12 1.57e -10 ***
Sargan 0 NA NA NA

In the ivreg function, the population model precedes the vertical line |, and the instruments follow
the | (each exogenous regressor is an instrument for itself). Notice the “Weak instruments” and “Wu-
Hausman” tests. What are these p-values telling you? The “Sargan” test is only applicable when we
have an “over-identified” IV estimator. See figure 8.2 for a visual comparison with LS.



Chapter 9

Multiple Hypothesis Testing

So far, we have seen the z and t test, and a few tests to do with IV. In this chapter, we will take a general
approach to testing a set of restrictions, and consider the consequences of imposing such restrictions on
an estimated model. Some examples of multiple restrictions that we might want to test:

1.

y = β0 + β1x1 + · · · + βkxk + ϵ
H0 : β1 = β2 = · · · = βk = 0 vs. HA : β1 ̸= 0, β2 ̸= 0, . . . , βk ̸= 0

2.

log(Y ) = β1 + β2 log(K) + β3 log(L) + ϵ
H0 : β2 + β3 = 1 vs. HA : β2 + β3 ̸= 1

3.

log(q) = β1 + β2 log(p) + β3 log(y) + ϵ
H0 : β2 + β3 = 0 vs. HA : β2 + β3 ̸= 0

If the null hypothesis is true, then this implies a restricted model. If we can obtain one model from
another by imposing restrictions on the parameters of the first model, we say that the two models are
“nested”.

We’ll be concerned with (several) possible restrictions on β, in the usual model:

y = Xβ + ϵ ; ϵ ∼ N
[
0, σ2In

]
and let’s return to our simplifying assumption that X is non-random. Let’s focus on J linear restrictions:

r11β1 + r12β2 + · · · + r1kβk = q1
r21β1 + r22β2 + · · · + r2kβk = q2

...
rJ1β1 + rJ2β2 + · · · + rJkβk = qJ

where many of the rjk’s will likely be zero. We can combine these J restrictions:

Rβ = q

where R and q are known and non-random. We’ll assume that rank(R) = J < k, so that there are no
conflicting or redundant restrictions.
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Question: What if J = k?

Example 9.1 — Take a set of linear restrictions and write them in terms of R and q.

1. β2 = β3 = · · · = βk = 0.

R =

 0 1 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 1

 ; q =

 0
...
0


2. β2 + β3 = 1.

R =
[

0 1 1 0 . . . 0
]

; q = 1

3. β3 = β4 and β1 = 2β2.

R =
[

0 0 1 −1 0 . . . 0
1 −2 0 0 0 . . . 0

]
; q =

 0
...
0


Suppose that we estimate the model by LS, and get b = (X ′X)−1 X ′y. It is very unlikely that

Rb = q! Denote the difference between what is estimated, and what is hypothesized as:

m = Rb − q

m is a (J × 1) random vector. Let’s consider the sampling distribution of m. It is a linear function
of b. If the errors in the model are Normal, then b is Normally distributed, and hence m is Normally
distributed as well. Now, to the expected value:

E[m] = RE[b] − q = Rβ − q

So,

E[m] = 0; iff Rβ = q

In addition, the covariance matrix of m is:

V [m] = V [Rb − q] = V [Rb] = RV [b]R′

= Rσ2 (X ′X
)−1

R′ = σ2R
(
X ′X

)−1
R′

Question: What assumptions were used to derive the expected value and variance of m?

So, the full sampling distribution of m is:

m ∼ N
[
0, σ2R

(
X ′X

)−1
R′
]

Let’s see how we can use this sampling distribution to test if Rβ = q.

9.1 Wald test



9.2 F-test statistic and its distribution 79

Definition 9.1 — Wald Test Statistic. The Wald Test Statistic for testing H0 : Rβ = q vs. HA : Rβ ̸= q
is W = m′[V (m)]−1m.

So:

W = (Rb − q)′
[
σ2R

(
X ′X

)−1
R′
]−1

(Rb − q)

= (Rb − q)′
[
R
(
X ′X

)−1
R′
]−1

(Rb − q)/σ2

and if H0 is true then m ∼ N
[
0, σ2R (X ′X)−1 R′

]
and:

W ∼ χ2
(J)

provided that σ2 is known. Note that:

• This result is valid only asymptotically if σ2 is unobservable, and we replace it with any consistent
estimator.

• We would reject H0 if W > critical value (i.e., when m = Rb − q is sufficiently “large”).
• The Wald test is a very general testing procedure and is used in other testing problems.
• The Wald test statistic is always constructed using an estimator that ignores the restrictions being

tested.

As we’ll see in the next section, for this particular testing problem, we can modify the Wald test
slightly and obtain a test that is exact in finite samples, and has excellent power properties.

9.2 F-test statistic and its distribution
Definition 9.2 — F-distribution Let x1 ∼ χ2

(v1), x2 ∼ χ2
(v2), and x1 and x2 be independent. χ2 denotes

the chi-square distribution, and v1 and v2 denotes degrees of freedom. Then:

F = [x1/v1]
[x2/v2]

∼ F(v1,v2)

F(v1,v2) denotes Snedecor’s F-distribution, with degrees of freedom v1 and v2.

The issue with the Wald test, is that when we replace σ2 with s2 (For example), the Chi-square
distribution only approximately describes the test statistic. The F-distribution tells us the exact distri-
bution of the test statistic, which depends on the sample size n. As n grows to infinity however, the
Wald test and F-test become identical.

The F-statistic can be derived from the Wald statistic by replacing σ2 with s2, and dividing by the
number of restrictions J in the null hypothesis:

F =
(

W

J

)(
σ2

s2

)

Theorem 9.1 — Distribution of the F-test statistic. F =
(

W
J

) (
σ2

s2

)
∼ F(J,(n−k)), if the null hypothesis

H0 : Rβ = q is true.
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Proof.

F =
(Rb − q)′

[
R (X ′X)−1 R′

]−1
(Rb − q)

σ2

( 1
J

)(
σ2

s2

)

=
(Rb − q)′

[
σ2R (X ′X)−1 R′

]−1
(Rb − q)/J[

(n−k)s2

σ2

]
/(n − k)

=
(

N

D

)

where D =
[

(n−k)s2

σ2

]
/(n − k) = χ2

(n−k)/(n − k). Consider the numerator:

N = (Rb − q)′
[
σ2R

(
X ′X

)−1
R′
]−1

(Rb − q)/J

Suppose that H0 is true, so that Rβ = q, and then:

(Rb − q) = (Rb − Rβ) = R(b − β)

Recalling that b = β + (X ′X)−1 X ′ϵ:

R(b − β) = R
(
X ′X

)−1
X ′ϵ

and

N =
[
R
(
X ′X

)−1
X ′ϵ

]′ [
σ2R

(
X ′X

)−1
R′
]−1 [

R
(
X ′X

)−1
X ′ϵ

]
/J

= (1/J)(ϵ/σ)′[Q](ϵ/σ)

where Q = X (X ′X)−1 R′
[
R (X ′X)−1 R′

]−1
R (X ′X)−1 X ′, and (ϵ/σ) ∼ N [0, In]. Now, (ϵ/σ)′[Q](ϵ/σ) ∼

χ2
(r) since Q is idempotent, where r = rank(Q). So,

rank(Q) = tr .(Q)

= tr .

{
X
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
X ′
}

= tr .

{(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
X ′X

}
= tr .

{
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
}

=
{[

R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
R′
}

= tr . (IJ) = J.

So, N = (1/J)(ϵ/σ)′[Q](ϵ/σ) = χ2
(J)/J . In the construction of F we have a ratio of two Chi-

Square statistics, each divided by their degrees of freedom. We need to establish that N and D are
independent. The Chi-Square statistic in N is: (ϵ/σ)′[Q](ϵ/σ) and the Chi-Square statistic in D is:
(n−k)s2

σ2 . Re-write this:

(n − k)s2

σ2 = (n − k)
σ2

(
e′e/(n − k)

)
=
(
e′e/σ2

)
= (Mϵ/σ)′(Mϵ/σ) = (ϵ/σ)′M(ϵ/σ)
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So, we have N = (ϵ/σ)′ [Q] (ϵ/σ) and D = (ϵ/σ)′ [M ] (ϵ/σ). These two statistics are independent if
and only if MQ = 0.

MQ =
[
I − X

(
X ′X

)−1
X ′
]

X
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
X ′

= Q − X
(
X ′X

)−1
X ′X

(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
X ′

= Q − X
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
X ′

= Q − Q = 0

So, if H0 is true, the statistic F is the ratio of two independent Chi-square variables, each divided by
their degrees of freedom. This implies that, if H0 is true:

F =
(Rb − q)′

[
R (X ′X)−1 R′

]−1
(Rb − q)/J

s2 ∼ F(J,(n−k))

In the proof of the distribution of the F -test statistic, it is important to note that this result relies
on A.6, the Normality of the error term. If the errors are not Normal, the F -test statistic does not
follow the F distribution.

The F-test is used for testing a set of linear restrictions because it is uniformly most powerful.
Finally, note that:(

t(v)
)2

= F(1,v)

9.3 Implementing the F-test
One way of implementing the F-test is to estimate the population model by LS and then calculate the
F statistic according to the formula:

F = (Rb − q)′
[
s2R

(
X ′X

)−1
R′
]−1

(Rb − q)/J (9.1)

and then reject the null hypothesis if the p-value from FJ,(n−k) is less than the significance level. We
will see a more convenient and intuitive way to perform an F-test, but first, let us consider a simple
example.

9.3.1 Simple F-test in a Cobb-Douglas model
Suppose that we want to estimate the simple Cobb-Douglas model:

log Y = β1 + β2 log K + β3 log L + ϵ

Download some data (the data is from table F7.2, Greene, 2012), estimate a model by LS, and view
the results:

cobbdata <- read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/cobb.csv")
mod1 <- lm(log(y) ~ log(k) + log(l), data = cobbdata)
summary(mod1)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.8444 0.2336 7.896 7.33e -08 ***
log(k) 0.2454 0.1069 2.297 0.0315 *
log(l) 0.8052 0.1263 6.373 2.06e -06 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Residual standard error: 0.2357 on 22 degrees of freedom
Multiple R- squared : 0.9731 , Adjusted R- squared : 0.9706
F- statistic : 397.5 on 2 and 22 DF , p-value: < 2.2e -16

What is the F-statistic of 397.5 for?
Let’s get the RSS (residual sum of squares, e′e for later use:

sum(mod1$residuals ^ 2)

[1] 1.22226

Now, test the hypothesis of constant returns to scale:

H0 : β2 + β3 = 1 vs. HA : β2 + β3 ̸= 1

The R and q associated with this null hypothesis are:

R =
[

0 1 1
]

; q = 1

We can calculate the F-test statistic from equation 9.1 in R using (this is not the way you will do it in
practice):

R <- matrix(c(0, 1, 1), 1, 3)
b <- matrix(mod1$coef, 3, 1)
q <- 1
m <- R %*% b - q
Fstat <- t(m) %*% solve(R %*% vcov(mod1) %*% t(R)) %*% m
Fstat

[,1]
[1,] 1.540692

and then calculate the p-value using:

1 - pf(Fstat, 1, 22)

[,1]
[1,] 0.2275873

With a p-value of 0.23 we fail to reject the null hypothesis. However, the F-test statistic only follows
the F-distribution if ϵ is Normally distributed. Test the Normality assumption using the Jarque-Bera
test:

install.packages("tseries")
library(tseries)
jarque.bera.test(mod1$residuals)

Jarque Bera Test

data: mod1$ residuals
X- squared = 5.5339 , df = 2, p-value = 0.06285

With a p-value of 0.063, the Normality assumption is dicey, and we may want to use the Wald test
instead. The Wald test statistic can be calculated from the F-stat by: W = J × F . In this example,
there is only one restriction (J = 1) so that the Wald and F-statistic coincide. The Wald statistic is
asymtptoically (in other words, approximately) Chi-square distributed even if A.6 is violated (as long
the LS estimators are asymptotically Normal). To get the p-value from the Chi-square distribution we
can use:
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1 - pchisq(Fstat, 1)

[,1]
[1,] 0.2145148

In this instance, the Wald and F-statistics are similar and our decision to “fail to reject” does not
change. The Wald and F-tests have supported the validity of the restrictions specified in the null
hypothesis. We could impose the restriction of constant returns to scale, by estimating the restricted
model:

log(Y/L) = β1 + β2 log(K/L) + ϵ

In the next section, we consider (i) the benefit of estimating a “restricted” model, and (ii) the cost of
using a restricted model, when the restrictions (null hypothesis) are false. To do this, we develop the
idea of the restricted least squares (RLS) estimator.

9.4 Restricted Least Squares
The RLS estimator is developed here, in order to:

• Examine the benefits (in terms of the properties of the estimator) of imposing restrictions on a
model

• Examine the costs of imposing false restrictions (again in terms of properties like unbiasedness,
efficiency, and consistency)

The basic idea is that the null hypothesis implies restrictions on the initial model under the alternative
hypothesis. If we fail to reject H0, then the restrictions could be imposed on the initial model simply by
substituting the values for (say) β from the null. A model obtained by imposing parameter restrictions
on a larger un-restricted model is often said to be “nested”.

Model B is “nested” in model A if B can be obtained by imposing parameter restrictions on A.

Many tests in econometrics can be interpreted as comparing the “fit” or “performance” of the
restricted (nested model, under H0) to that of the unrestricted model (under HA). The F-test is no
exception. We will see that we can calculate the F-statistic by estimating two models and comparing
their RSS or R2. Before we do so, we develop the RLS estimator.

Definition 9.3 — Restricted least squares estimator (RLS) The RLS estimator of β, in the model y =
Xβ+ϵ, is the vector, b∗, which minimizes the sum of the squared residuals, subject to the constraint(s)
Rb∗ = q.

We will obtain the expression for this new estimator, and derive its sampling distribution. Set up the
Lagrangian:

L = (y − Xb∗)′ (y − Xb∗) + 2λ′ (Rb∗ − q)

For the first order conditions, set (∂L/∂b∗) = 0 ; (∂L/∂λ) = 0, and solve:

L = y′y + b′
∗X ′Xb∗ − 2y′Xb∗ + 2λ′ (Rb∗ − q)

(∂L/∂b∗) = 2X ′Xb∗ − 2X ′y + 2R′λ = 0 (9.2)
(∂L/∂λ) = 2 (Rb∗ − q) = 0 (9.3)
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From equation 9.2

R′λ = X ′ (y − Xb∗)

R
(
X ′X

)−1
R′λ = R

(
X ′X

)−1
X ′ (y − Xb∗)

λ =
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
X ′ (y − Xb∗)

(9.4)

Inserting equation 9.4 into equation 9.2, and dividing by 2:

(
X ′X

)
b∗ = X ′y − R′

[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
X ′ (y − Xb∗)(

X ′X
)

b∗ = X ′y − R′
[
R
(
X ′X

)−1
R′
]−1

R (b − b∗)

b∗ =
(
X ′X

)−1
X ′y −

(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

(Rb − Rb∗)

(9.5)

and finally substituting equation 9.3 into equation 9.5, the RLS estimator is:

b∗ = b −
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

(Rb − q) (9.6)

From the above formula, we can see that RLS = LS + “adjustment factor”.

Questions: What if Rb = q? What is the interpretation of this?

We will use the RLS formula in order to derive the statistical properties of RLS estimation, thus
informing us the benefits of imposing true restrictions, and costs of imposing false ones.

Theorem 9.2 — RLS estimator is unbiased iff H0 is true. The RLS estimator of β is unbiased iff Rβ = q
is true. Otherwise, the RLS estimator is biased.
Proof.

E (b∗) = E(b) −
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

(RE(b) − q)

= β −
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

(Rβ − q)

So, if Rβ = q, then E (b∗) = β. Similarly, the LS estimator is only consistent if the restrictions (null
hypothesis) are true.

The cost of imposing false restrictions (for example “dropping” a variable that is actually significant)
is incurring bias and inconsistency in the LS estimator.

The potential cost of estimating a restrictive model is very high. The potential benefit, however, is
an improvement in efficiency. That is, the RLS estimator has smaller variance than the LS estimator
(regardless of the veracity of the restrictions). Intuitively, if restrictions are imposed on a model, than
there are fewer parameters to estimate. The same amount of information (the sample size) can focus on
estimating fewer parameters; this translates to smaller standard errors, narrower confidence intervals,
etc. Another intuitive way to think of it is as follows. The null hypothesis contains information about
the parameters. Using this information while estimating the model improves efficiency.

Below, we prove that the RLS estimators has lower variance than the LS estimators (this does not
contradict the GM theorem since the RLS is estimating a different model from the LS estimator). The
proof does not require that the restrictions are actually true.
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Theorem 9.3 — The RLS estimator has smaller variance than the LS estimator. Proof:
First, we derive the covariance matrix of the RLS estimator of β.

b∗ = b −
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

(Rb − q)

=
{

I −
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R

}
b + α

where α is non-random and α = (X ′X)−1 R′
[
R (X ′X)−1 R′

]−1
q. So, V (b∗) = AV (b)A′, where

A =
{

I − (X ′X)−1 R′
[
R (X ′X)−1 R′

]−1
R

}
. That is, V (b∗) = AV (b)A′ = σ2A (X ′X)−1 A′. Now,

examine A (X ′X)−1 A′:

A
(
X ′X

)
A′ =

{
I −

(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R

} (
X ′X

)−1

×
{

I − R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
}

=
(
X ′X

)−1 +
(
X ′X

)−1
R′

×
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1

− 2
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1

=
(
X ′X

)−1
{

I − R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
}

So,

V (b∗) = σ2 (X ′X
)−1

{
I − R′

[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1
}

= σ2 (X ′X
)−1 − σ2 (X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1

= V (b) − σ2 (X ′X
)−1

R′
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1

So, V (b) − V (b∗) = σ2∆, where ∆ = (X ′X)−1 R′
[
R (X ′X)−1 R′

]−1
R (X ′X)−1. ∆ is square, sym-

metric, and of full rank. So, ∆ is at least positive semi-definite.

The above proof tells us that the variability of the RLS estimator is no more than that of the LS
estimator, whether or not the restrictions are true. Generally, the RLS estimator will be “more
precise” than the LS estimator.

In addition, we know that the RLS estimator is unbiased if the restrictions are true. So, if the
restrictions are true, the RLS estimator, b∗, is more efficient than the LS estimator, b, of the coefficient
vector, β. If the restrictions are false, and we consider the MSE, then the relative efficiency can go
either way.

The RLS estimator that we have discussed in this section (equation 9.6) is used to determine the
consequences of imposing restrictions on a model, whether the restrictions are true or false. In practice,
equation 9.6 is not used to effect RLS estimation. Rather, the restrictions are simply imposed on the
model (such as dropping a regressor), and the model is re-estimated using LS. In practice, we:

• Estimate the unrestricted model, using LS.
• Test H0 : Rβ = q vs. HA : Rβ ̸= q.
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• If the null hypothesis can’t be rejected, substitute the restrictions into the model and re-estimate
using LS.

• Otherwise, retain the initial estimates under the unrestricted model.

9.5 Testing by comparing unrestricted and restricted models
We can rewrite the F-test statistic formula in equation 9.1 in terms of the residuals or R2 from the
restricted and unrestricted model. This may be a more intuitive way of looking at the F-test.

Let e∗ be the residuals from RLS estimation. By substituting in equation 9.6 for b∗, we can write
e∗ as:

e∗ = (y − Xb∗) = y − Xb + X
(
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

(Rb − q)

= e + X
(
X ′X

)
R′
[
R
(
X ′X

)−1
R′
]−1

(Rb − q)

Recalling that X ′e = 0:

e′
∗e∗ = e′e + (Rb − q)′A(Rb − q)

where A is full rank and is positive semi-definite, and is:

A =
[
R
(
X ′X

)−1
R′
]−1

R
(
X ′X

)−1 (
X ′X

) (
X ′X

)−1
R′
[
R
(
X ′X

)−1
R′
]−1

=
[
R
(
X ′X

)−1
R′
]−1

Question: e′
∗e∗ > e′e, because (Rb − q)′A(Rb − q) > 0. This inequality will always hold. What’s the

intuition behind this?

Now, take the difference:(
e∗

′e∗ − e′e
)

= (Rb − q)′A(Rb − q)

= (Rb − q)′
[
R
(
X ′X

)−1
R′
]−1

(Rb − q)
(9.7)

Recalling that:

F =
(Rb − q)′

[
R (X ′X)−1 R′

]−1
(Rb − q)/J

s2

we can rewrite the F-statistic formula in an alternative and more convenient form:

F = (e∗
′e∗ − e′e) /J

s2 = (e∗
′e∗ − e′e) /J

e′e/(n − k) (9.8)

In retrospect, we can see further why R2 increases when we add any regressor to the model: deleting a
regressor is equivalent to imposing a zero restriction on one of the coefficients. The RSS increases and
so R2 decreases. In fact, using the definition for R2, we can also rewrite the F-test statistic as:

F =
(
R2 − R2

∗
)

/J

(1 − R2) / (n − k) (9.9)

where R2
∗ is from the restricted model.
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Equations 9.8 and 9.9 provide an intuitive interpretation of the F-test (which apply to many other
tests used in econometrics): if the restricted model (under the null hypothesis) “fits” the data much
more poorly than the unrestricted model (under the alternative hypothesis), then the F-statistic will
be large and the restrictions (null) will be rejected.

9.5.1 F-test in Cobb-Douglas again
We revisit the example from section 9.3.1 applying the version of the F-test from equation 9.8. To
accomplish this, estimate two models: one under the null hypothesis (restricted model), and one under
the alternative hypothesis (unrestricted model):

cobbdata <- read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/cobb.csv")
unrestricted <- lm(log(y) ~ log(k) + log(l), data = cobbdata)
restricted <- lm(log(y/l) ~ log(k/l), data = cobbdata)

Notice that, to implement the restriction of CRTS, the left-hand-side variable has changed. This means
that equation 9.9, and some “canned” commands in Stata and R (for example anova()) for performing
the F-test, will not work! We can use the residuals from the two models, however:

RSS <- sum(unrestricted$residuals ^ 2)
RSSstar <- sum(restricted$residuals ^ 2)

and calculate the F-stat according to equation 9.8:

Fstat2 <- ((RSSstar - RSS) / 1) / (RSS / 22)
Fstat2

> Fstat2
[1] 1.540692

where we notice that the F-statistic is the same as in section 9.3.1.

9.6 Testing for differences
Dummy variables are important and are used very commonly in economics research. Although a dummy
variable can take many values, in economics it is almost always refers to a binary indicator variable.
Typically the values that the dummy variable can take are 0 or 1, where each value corresponds to a
certain quality, or to membership in a group. A common convention is to name the dummy variable so
that a value of 1 indicates “yes”, and a value of 0 indicates “no”. For example, the variable foreign
might equal 1 when a firm is foreign-owned, and 0 when domestically owned.

Dummy variables provide a convenient way to test for differences between groups, regions, countries,
types of firms, moments in time, treatment status, etc.

Let D denote our dummy variable. Then, consider a model of the form:

yi = β1 + β2xi2 + · · · + βkDi + ϵi (9.10)

we could then think of testing:

H0 : βk = 0 vs. HA : βk ̸= 0

using a t-test or z-test. Rejection of H0 implies there is a particular type of structural change in the
model. In particular, the dummy variable in equation 9.10 allows the mean of yi to differ depending on
the value of Di, that is:

E (yi|Di = 1) − E (yi|Di = 0) = βk



9.6 Testing for differences 88

So, rejection of H0 implies that Di has a significant effect on the mean of yi. More generally, consider
a model of the form:

yi = β1 + β2xi2 + · · · + βk−1 (Di × xi2) + βkDt + ϵi (9.11)

where we could use an F or Wald test for:

H0 : βk−1 = βk = 0 vs. HA : Not H0

Rejection of H0 implies a different type of structural change in the model: a shift in the mean and one of
the marginal effects. Allowing the dummy variable to interact with the “x” variables, such as in model
9.11, allows for variables to have different marginal effects depending on regions, times, or treatment
status. For example, in model 9.11, the change in y associated with a change in x2 is:

∂yi

∂xi2
= β2 + Diβk−1

At the extreme, we could allow the dummy variable to interact fully with every variable in the model:

y = Xβ1 + DXβ2 + ϵ (9.12)

Testing the joint significance of every term that includes Di (H0 : β2 = 0) is equivalent to the Chow
test (Gregory Chow, 1960). Note the parameter estimates from model 9.12 can also be obtained by
fitting two separate models for the two separate subsamples (as defined by the dummy variable).

Example 9.2 — Life Expectancy - F-test. This example follows Greene (2012), example 6.10 (pg. 173).
The WHO released a report in 2000 that gained much attention, and was controversial. It suggested
that health care expenditure by OECD countries had more of an impact on life expectancy than
spending by non-OECD countries.

The dependent variable is DALE - disability-adjusted life expectancy. Consider a simple model:

DALE = β1 + β2HEXP + β3HC3 + β4HC32 + ϵ (9.13)

where HEXP is health expenditure, and HC3 is a measure of educational attainment. Download data
from Greene, choose to use only the year 1997, and delete missing values (to follow Greene):

health <- read.csv("http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF6-3.csv")
health <- subset(health, health$YEAR == 1997)
health <- na.omit(health)

Next create the squared term (we can’t square inside lm()):

health$HC3sq <- health$HC3^2

Estimate model 9.13, and view the results:

mod1 <- lm(DALE ~ HEXP + HC3 + HC3sq, data = health)
summary(mod1)
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Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 25.237039 2.439645 10.345 < 2e -16 ***
HEXP 0.006291 0.001056 5.960 1.23e -08 ***
HC3 7.930951 0.902432 8.788 9.73e -16 ***
HC3sq -0.438988 0.077157 -5.690 4.85e -08 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.984 on 187 degrees of freedom
Multiple R- squared : 0.6824 , Adjusted R- squared : 0.6773
F- statistic : 133.9 on 3 and 187 DF , p-value: < 2.2e -16

Now, consider a model that has a dummy variable OECD that interacts with all of the regressors:

DALE =β1 + β2HEXP + β3HC3 + β4HC32 + β5OECD + β6(OECD × HEXP )
+ β7(OECD × HC3) + β8(OECD × HC32) + ϵ

(9.14)

Model 9.14 allows for the effects of both health expenditure and education to differ, depending on
whether the country is OECD or not. Estimate this model in R:

mod2 <- lm(DALE ~ HEXP + HC3 + HC3sq + OECD + OECD*HEXP + OECD*HC3 + OECD*HC3sq,
data = health)

summary(mod2)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 26.812047 2.651604 10.112 < 2e -16 ***
HEXP 0.009551 0.001934 4.938 1.77e -06 ***
HC3 7.043319 1.074319 6.556 5.46e -10 ***
HC3sq -0.373804 0.096020 -3.893 0.000139 ***
OECD 15.916263 25.678970 0.620 0.536149
HEXP:OECD -0.006872 0.002619 -2.624 0.009435 **
HC3:OECD -0.866530 6.261351 -0.138 0.890082
HC3sq:OECD -0.011024 0.378032 -0.029 0.976768
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.86 on 183 degrees of freedom
Multiple R- squared : 0.7002 , Adjusted R- squared : 0.6887
F- statistic : 61.06 on 7 and 183 DF , p-value: < 2.2e -16

Now, test the hypothesis that there is no difference between OECD and non-OECD countries (we are
testing the joint significance of all interaction terms):

H0 : β5 = 0, β6 = 0, β7 = 0, β8 = 0 vs. HA : not H0

To calculate the F-test, we can use the R-squared from the unrestricted and restricted models:

F =
(
R2 − R2

∗
)

/J

(1 − R2) / (n − k) = (0.7002 − 0.6824)/4
(1 − 0.7002)/183 = 2.716

While this formula for the F-test statistic highlights its dependence on the “fit” of the models under
the null and alternative hypotheses, we can easily perform this test in R using the anova() function:

anova(mod1, mod2)
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Analysis of Variance Table

Model 1: DALE ~ HEXP + HC3 + HC3sq
Model 2: DALE ~ HEXP + HC3 + HC3sq + OECD + OECD * HEXP + OECD * HC3 +

OECD * HC3sq
Res.Df RSS Df Sum of Sq F Pr(>F)

1 187 9121.8
2 183 8611.0 4 510.83 2.714 0.0314 *

We get a similar F-stat of 2.714, with associated p-value of 0.0314. We reject the null hypothesis
at 5% significance. It would appear that OECD countries might differ from non-OECD. However,
this difference is being driven by the variable HEXP. We would fail to reject the null that the effect of
education on life expectancy is the same for both OECD and non-OECD (see exercise 2), and could
perhaps drop the interaction terms OECD × HC3 and OECD × HC32 from the model.

9.7 Exercises
1. Using R, verify that estimating a model where a dummy variable fully interacts with every vari-

able, provides identical parameter estimates to dividing the data into two subsamples (where the
subsamples are defined by the dummy variable).

2. Using the data from example 9.2, and using model 9.14 as the unrestricted model, test the hy-
pothesis that the effect of education on life expectancy is the same for OECD and non-OECD
countries.



Chapter 10

Non-Linear Relationships and
Non-Linear Least Squares

The models we’ve worked with so far have been linear in the parameters, and have been of the form:

y = Xβ + ϵ

In this chapter we’ll be interested in a more general model:

y = f(θ; X) + ϵ (10.1)

where f() can be non-linear (the linear model is just a special case).
Many relationships between variables are non-linear. Simple examples are diminishing marginal

utility, or increasing returns to scale. If the data generating process specifies a non-linear relationship
between the dependent and explanatory variables, LS may be biased and inconsistent.

10.1 Transforming a non-linear population model
In some situations where f in model 10.1 is non-linear, we may be able to transform the variables
in order to linearize the relationship between y and X (for example taking logs of a Cobb-Douglas
production function). Cobb-Douglas production function:

Y = AKβ2Lβ3ε

By taking logs, the Cobb-Douglas production function can be rewritten as:

log Y = β1 + β2 log K + β3 log L + log(ε)

This model now satisfies A.1 (linear in the parameters), however, it is not always advisable to estimate
multiplicative models by LS! Silva and Tenreyro (2006)1 if log(ε) is heteroskedastic2 (it likely is), then
X and log(ε) are not independent (violation of A.5).

10.2 Polynomial regression model
In other situations, where the model is non-linear in the parameters (model 10.1), we can approximate
the non-linear relationship. A common practice is to add additional variables to X, that are just
non-linear transformations of the original X matrix. For example, including in the regression model
higher order polynomials of the x variables (i.e. squared and cubed terms), makes f in model 10.1
approximately linear. The validity of such an approach is based on the Taylor series approximation.
1Silva and Tenreyro (2006). The Log of Gravity. The Review of Economics and Statistics.
2We cover heteroskedasticity in the next chapter.
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One way to characterize the non-linear relationship between y and x is to say that the marginal
effect of x on y depends on the value of x itself. By just including powers of the regressors on the
right-hand-side of the regression model (this is not a violation of A.2), we can allow the marginal effect
of x on y to vary in a way that depends on x. For example:

y = β0 + β1x + β2x2 + β3x3 + · · · + ϵ (10.2)

Taking the derivative of y with respect to x gives:

∂y

∂x
= β1 + 2xβ2 + 3x2β3 + · · ·

We can choose β to give an arbitrarily good approximation of any non-linear relationship y = f(x).
The appropriate order of the polynomial may be determined through a series of t-tests, where if the
highest order term is found to be insignificant, it is dropped and the model re-estimated.

The drawback of polynomial regression models are that the parameters become difficult to interpret,
and the model may not generalize well outside of the data. Often we are interested in a causal effect
that is represented by parameters in a model, and so we might want to estimate the non-linear model
directly.

10.3 Splines

Figure 10.1: What model would you specify for this data?

There may be a “break” in the model so that it is “piecewise” linear (see Figure 10.1 where there is a
break at x = 5). From section 9.6 we know that we can use a dummy variable to fully interact with all
of the variables in the model, allowing the intercept and slope coefficients to differ by the value of the
dummy. That is, we could define a dummy variable:

D = 0 if x < 5;
D = 1 if x ≥ 5

and then estimate a model for the data in Figure 10.1 as:

y = β1 + β2x + β3D + β4Dx + ϵ (10.3)

Model 10.3 is estimated, and drawn in figure 10.2. Notice that the two separate regression lines do not
connect at the break point.
In section 9.4, we discussed how we can impose restrictions on the parameters in the model. If we want
to estimate a piecewise linear regression function, then we can force the two lines in Figure 10.2 to join
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Figure 10.2: A dummy variable allows for two separate regression lines to be estimated, on either side
of the “break” point. Notice that the two lines do not connect.

Figure 10.3: Restricting the parameter values in a model where a dummy variable fully interacts with
every variable can force the piecewise linear function to join at knots. This is known as spline regression.

at the break-point (called a “knot”). We can do so by imposing a restriction on the model: the y value
at the end of the first line should be equal to the y value at the beginning of the second line. That is,
the equations for the two separate lines should equal when x = 5. Imposing such a restriction gives us
the model:

y = β1 + β2x + β4D(x − 5) + ϵ (10.4)

Estimating the restricted model 10.4 (see Figure 10.3) is called spline regression. We can have multiple
“knots” (break points) in the spline regression, where the piecewise linear functions are joined at the
knots through a set of restrictions on the parameter values. This model can be extended to allow an
arbitrary number of knots, the locations of which can be determined by the data. This extension is
known as non-parametric kernel regression (not covered in these notes).

10.4 Non-linear least squares
In yet other cases, when the model is inherently non-linear in the parameters, an approximation may
be inadequate. In addition, we may desire to estimate the economic model in its natural form, to
have a more direct interpretation of the parameter estimates. Then, we must use a different estimation
methodology, such as non-linear least squares (NLS). An alternative option could be maximum likelihood.
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Take for example a CES production function:

Yi = γ
[
δK−ρ

i + (1 − δ)L−ρ
i

]−v/ρ
exp (ϵi)

This is a function where there is no known transformation to make it linear in the parameters. In
general, suppose we have a single non-linear equation:

yi = f (xi1, xi2, . . . , xik; θ1, θ2, . . . , θp) + ϵi

y = f(X; θ) + ϵ
(10.5)

We can still consider a “least squares” approach to estimate model 10.5 (which can be motivated by
the method of moments). The Non-Linear Least Squares estimator is the vector, θ̂, that minimizes the
quantity: S(X, θ) =

∑
i

[
yi − fi(X, θ̂)

]2
. (Note that the usual LS estimator is a special case of this).

To obtain the estimator, we differentiate S with respect to each element of θ̂; set up the “p” first-order
conditions, and solve.

We won’t derive the results here, but the properties of the NLS estimator are as follows:

• consistent
• asymptotically efficient
• asymptotically Normal

The NLS estimator has good asymptotic properties, however, there is a serious computational difficulty.
Usually there is no exact solution for θ̂! The first-order conditions are themselves non-linear in the
unknown parameters. This is true for the vast majority of estimators in non-linear models, including
maximum likelihood. There is (generally) no exact, closed-form solution. That is, we can’t write down
an explicit formula for the estimators of the parameters.

Example 10.1 — No closed form solution. Take the model:

yi = θ1 + θ2xi2 + θ3xi3 + (θ2θ3) xi4 + ϵi

The sum of squared errors are:

S =
∑

i

[yi − θ1 − θ2xi2 − θ3xi3 − (θ2θ3) xi4]2

and the first-order conditions are:

∂S

∂θ1
= −2

∑
i

[yi − θ1 − θ2xi2 − θ3xi3 − (θ2θ3) xi4]

∂S

∂θ2
= −2

∑
i

[(θ3xi4 + xi2) (yi − θ1 − θ2xi2 − θ3xi3 − θ2θ3xi4)]

∂S

∂θ3
= −2

∑
i

[(θ2xi4 + xi3) (yi − θ1 − θ2xi2 − θ3xi3 − θ2θ3xi4)]

Setting these 3 equations to zero, we can’t solve analytically for the estimators of the three parameters.

In situations such as example 10.1, and the majority of non-linear models, we need to use a numerical
algorithm to obtain a solution to the first-order conditions. There are lots of methods for doing this,
most of which are based on Newton’s algorithm.
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10.4.1 Taylor series approximation
A Taylor series is an expansion of a function f(x) about a point x = a, and is given by:

f(x) = f(a) + f ′(a)
1! (x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)
3! (x − a)3 + · · ·

where f ′(a) and f ′′(a) are the first and second derivatives of f(x) evaluated at the point a, for example.
Taylor’s theorem says that certain functions can be expressed as a Taylor series. The right-hand-side

of the Taylor series becomes an approximation when we truncate the infinite sum, for example:

f(x) ≈ f(a) + f ′(a)
1! (x − a) + f ′′(a)

2! (x − a)2

10.4.2 Newton-Raphson algorithm
Suppose we want to minimize some function, f(θ). We can approximate the function using a Taylor’s
series expansion about θ̃, the vector value that minimizes f(θ):

f(θ) ≈ f(θ̃) + (θ − θ̃)′
(

∂f

∂θ

)
θ̃

+ 1
2!(θ − θ̃)′

[
∂2f

∂θ∂θ′

]
θ̃

(θ − θ̃)

or:

f(θ) ≈ f(θ̃) + (θ − θ̃)′g(θ̃) + 1
2!(θ − θ̃)′H(θ̃)(θ − θ̃)

Now, the derivative of the function f(θ) that we want to minimize is:

∂f(θ)
∂θ

≈ 0 + (θ − θ̃)′g(θ̃) + 1
2!2H(θ̃)(θ − θ̃)

However, the gradient at the minimum located by θ̃ is zero (g(θ̃) = 0), so:

(θ − θ̃) ≈ H−1(θ̃)
(

∂f(θ)
∂θ

)
or

θ̃ ≈ θ − H−1(θ̃)g(θ) (10.6)

Equation 10.6 suggests a numerical algorithm: set θ = θ0 to begin, and then iterate:

θ1 = θ0 − H−1 (θ1) g (θ0)
θ2 = θ1 − H−1 (θ2) g (θ1)

...
θn+1 = θn − H−1 (θn+1) g (θn)

or, approximately:

θn+1 = θn − H−1 (θn) g (θn) (10.7)

The algorithm stops when the difference between iterations is within a certain tolerance, that is, if:∣∣∣∣∣∣
(
θ

(i)
n+1 − θ

(i)
n

)
θ

(i)
n

∣∣∣∣∣∣ < E(i); i = 1, 2, . . . , p

When the algorithm stops because the changes between successive iterations are small, the algorithm
is said to have converged. Note:
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• The algorithm fails if H ever becomes singular at any iteration.
• The algorithm will achieve a minimum if H is positive definite.
• The algorithm may locate only a local minimum.
• The algorithm may oscillate.

The algorithm can be given a nice geometric interpretation in the case of a scalar θ.

Figure 10.4: Illustration of Newton-Raphson algorithm for scalar θ.

In general, different choices of θ0 may lead to different solutions, or no solution at all.

Example 10.2 — Newton’s method. Consider locating the minimum of the following function:

f(θ) = 3θ4 − 4θ3 + 1

We can actually solve for the minimum analytically (the solution is 1):

g(θ) = 12θ3 − 12θ2 = 12θ2(θ − 1)
H(θ) = 36θ2 − 24θ = 12θ(3θ − 2)

Let’s instead use the algorithm. Choose an initial value θ0 = 2 for example. Then:

θ1 = 2 −
(48

96

)
= 1.5

θ2 = 1.5 −
(13.5

45

)
= 1.2

θ3 = 1.2 −
( 3.456

23.040

)
= 1.05

We can see the solution converging to 1. What if we try θ0 = −2?

Example 10.3 — NLS in R. In this example, we generate data according to the following non-linear
model:

y = β1xβ2 + ϵ

Set some parameter values and generate some data:
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set.seed(1)
n <- 50
x <- rnorm(n, 5, 2)
beta1 <- 3
beta2 <- 2.5
y <- beta1 * x ^ beta2 + rnorm(n, 0, 40)

Now, estimate the model using NLS:

mod <- nls(y ~ b1 * x ^ b2, start = list(b1 = 0, b2 = 0))
summary(mod)

Formula : y ~ b1 * x^b2

Parameters :
Estimate Std. Error t value Pr(>|t|)

b1 2.6193 0.6124 4.277 8.97e -05 ***
b2 2.5618 0.1230 20.824 < 2e -16 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 36.46 on 48 degrees of freedom

Number of iterations to convergence : 9
Achieved convergence tolerance : 1.443e -07

Notice that we need to choose starting values for the parameters, and that the estimation output
refers to iterations, convergence, and tolerance.

10.5 The Log of Gravity
Beginning in 1962, many theories of trade, even when based on different foundations, all predicted a
gravity relationship for trade flows (analogous to Newton’s law of gravitation):

Tij = α0Y α1
i Y α2

j Dα3
ij ηij (10.8)

The gravity model in equation 10.8 suggests that trade flow from i to j is directly proportional to
the GDP of i and j (Yi and Yj), and inversely proportional to their (broadly-defined) distance (Dij).
α0, α1, α2, α3 are the parameters to be estimated. ηij is an error term with E (ηij | Yi, Yj , Dij) = 1,
which is independent from the regressors.

For decades, equation 10.8 was log-linearized (as we have done with the Cobb-Douglas model) so
that LS can be used to estimate the unknown parameters:

ln Tij = ln α0 + α1 ln Yi + α2 ln Yj + α3 ln Dij + ln ηij

= β0 + β1 ln Yi + β2 ln Yj + β3 ln Dij + ϵij
(10.9)

An immediate issue with log-linearizing the gravity equation is that trade flows of zero (Tij = 0) are
not allowed, since ln 0 is undefined. The practice was to drop observations with 0 trade flows from the
data set, even though in many cases there were lots of 0s in the data.

Further to the problem of 0s in the data, in a famous paper called “The log of gravity”3, Silva and
Tenreyo (2006) showed that the LS estimator of equation 10.9 is biased and inconsistent in the fairly
common situation where the error term ηij is heteroskedastic (we cover heteroskedasticity in the next
chapter). This was surprising; although ηij may be independent from the regressors, ln ηij is generally
not independent. This is a violation of A.5, suggesting that LS should not be used, and that the gravity
equation in 10.8 should be estimated in it’s non-linear form (NLS can be used, but Silva and Tenreyo
actually propose a more efficient estimator in their paper).
3Silva, J. S., & Tenreyro, S. (2006). The log of gravity. The Review of Economics and Statistics, 88(4), 641-658.
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Figure 10.5: A table of estimates from Silva and Tenreyo (2006). I have edited the table, removing
three columns.

10.5.1 Estimate gravity by LS
Let’s reproduce the first column in Table 10.5. Load the gravity data using:

grav <- read.csv("https://rtgodwin.com/data/gravity.csv")

Drop all observations where trade is zero (that’s almost half the sample!) and estimate the model by
log-linearizing and using LS:

grav.no.zeros <- subset(grav, grav$trade > 0)
m1 <- lm(log(trade) ~ lypex + lypim + lyex + lyim + ldist + border + comlang

+ colony + landl_ex + landl_im + lremot_ex + lremot_im + comfrt_wto
+ open_wto,
data = grav.no.zeros)

summary(m1)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -28.49202 1.08804 -26.187 < 2e -16 ***
lypex 0.93782 0.01163 80.624 < 2e -16 ***
lypim 0.79779 0.01110 71.881 < 2e -16 ***
lyex 0.20731 0.01664 12.462 < 2e -16 ***
lyim 0.10613 0.01670 6.355 2.18e -10 ***
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ldist -1.16601 0.03391 -34.390 < 2e -16 ***
border 0.31400 0.14252 2.203 0.027603 *
comlang 0.67804 0.06398 10.597 < 2e -16 ***
colony 0.39680 0.06810 5.827 5.84e -09 ***
landl _ex -0.06197 0.06459 -0.959 0.337363
landl _im -0.66452 0.06313 -10.526 < 2e -16 ***
lremot _ex 0.46707 0.07776 6.007 1.96e -09 ***
lremot _im -0.20496 0.08077 -2.538 0.011177 *
comfrt _wto 0.49082 0.10533 4.660 3.20e -06 ***
open_wto -0.16964 0.04902 -3.460 0.000542 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.9 on 9598 degrees of freedom
Multiple R- squared : 0.6623 , Adjusted R- squared : 0.6618
F- statistic : 1345 on 14 and 9598 DF , p-value: < 2.2e -16

Notice that these results are very similar to those reported in Figure 10.5.

10.5.2 Estimate gravity by NLS
Taking logs and using LS is a bad idea (bias and inconsistency), so we should undo the logs:

Tij = α0Y α1
i Y α2

j Dα3
ij ηij

ln Tij = β0 + β1 ln Yi + β2 ln Yj + β3 ln Dij + ln ηij

exp (ln Tij) = exp (β0 + β1 ln Yi + β2 ln Yj + β3 ln Dij + ln ηij)
T = exp (Xβ) + ϵ

(10.10)

We write the gravity model in this way4 so that we can see that NLS is applicable (it matches y =
f(X; β) + ϵ in equation 10.5), and so that we see that we can ask the computer to find β in exp (Xβ)
instead of α in α0Y α1

i Y α2
j Dα3

ij . Asking for β is much easier than the α (it is very common to make
transformations in non-linear estimation).

To estimate the model by NLS, on the RHS we put the linear equation inside of the exponent:
exp (Xβ).5 In the R code below, notice that we need to choose starting values for each of the parameters:

m2 <- nls(trade ~ exp(b0 + b1 * lypex + b2 * lypim + b3 * lyex + b4 * lyim
+ b5 * ldist + b6 * border + b7 * comlang + b8 * colony
+ b9 * landl_ex + b10 * landl_im + b11 * lremot_ex
+ b12 * lremot_im + b13 * comfrt_wto + b14 * open_wto),

data = dat,
start = list(b0 = 0, b1 = 0.5, b2 = 0.5, b3 = 0.5, b4 = 0.5,

b5 = 0.5, b6 = 0.5, b7 = 0.5, b8 = 0.5, b9 = 0.5,
b10 = 0.5, b11 = 0.5, b12 = 0.5, b13 = 0.5, b14 = 0.5))

summary(m2)

Formula : trade ~ exp(b0 + b1 * lypex + b2 * lypim + b3 * lyex + b4 * lyim +
b5 * ldist + b6 * border + b7 * comlang + b8 * colony + b9 *
landl_ex + b10 * landl _im + b11 * lremot _ex + b12 * lremot _im +
b13 * comfrt _wto + b14 * open_wto)

Parameters :
Estimate Std. Error t value Pr(>|t|)

b0 -45.098657 0.239150 -188.579 < 2e -16 ***
b1 0.737755 0.004358 169.282 < 2e -16 ***
b2 0.861871 0.004517 190.811 < 2e -16 ***

4We have used ηij = 1 + ϵij/ exp (xijβ) (see Silva and Tenreyro (2006)) to get to the last line.
5This is a common “link” function to use when the LHS variable needs to be non-negative.
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b3 0.395645 0.009664 40.940 < 2e -16 ***
b4 -0.032511 0.006660 -4.881 1.06e -06 ***
b5 -0.923709 0.008487 -108.844 < 2e -16 ***
b6 -0.081309 0.009858 -8.248 < 2e -16 ***
b7 0.689402 0.015900 43.358 < 2e -16 ***
b8 0.035797 0.017787 2.013 0.0442 *
b9 -1.367068 0.030514 -44.802 < 2e -16 ***
b10 -0.471462 0.022312 -21.130 < 2e -16 ***
b11 1.187801 0.018258 65.056 < 2e -16 ***
b12 1.009682 0.017882 56.462 < 2e -16 ***
b13 0.442547 0.013734 32.224 < 2e -16 ***
b14 0.928022 0.023823 38.955 < 2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 567000 on 18345 degrees of freedom

Number of iterations to convergence : 47
Achieved convergence tolerance : 6.762e -06

Again note that these results are very similar as those reported in Figure 10.5.

10.6 Exercises
1. Show that a polynomial regression model allows for regressors to have non-linear effects on the

outcome (y) variable.
2. Show how to get model 10.4 from model 10.3.
3. Explain how you could decide whether to use model 10.4 or model 10.3.
4. Describe, but do not derive, the properties of the NLS estimator.
5. Derive the Newton-Raphson algorithm graphically, for the scalar case.
6. Explain the terms: iterations, convergence, and tolerance, in reference to the Newton-Raphson

algorithm.
7. Estimate the gravity model yourself, using LS and NLS.



Chapter 11

Heteroskedasticity

In this chapter we revisit assumption A.4, which says:

V [ϵ] = σ2In

The term “non-spherical disturbances” refers to the situation where V [ϵ] ̸= σ2In. In this chapter, we
instead generalize the specification of the error term in the population model:

E[ϵ] = 0 ; V [ϵ] = σ2Ω = Σ (11.1)

Equation 11.1 allows for the possibility of one or both of heteroskedasticity and autocorrelation. In this
chapter we examine the situation of heteroskedasticity, and how this more general situation for the
covariance matrix of the error term affects our LS estimator, and hypothesis testing.

Definition 11.1 — Heteroskedasticity. The error term is said to be heteroskedastic when var[ϵi] = σ2
i ,

and there are some σ2
i ̸= σ2

j . That is, each observation can have a different variance, and the term “het-
eroskedasticity” means “differing dispersion.” The alternative to heteroskedasticy is homoskedasticity
(which we have been assuming via A.4), where var[ϵi] = σ2.

In the case of heteroskedasticity, the covariance matrix for the error term takes the form:

σ2Ω = σ2


ω11 0 · · · 0
0 ω22 · · · 0
...

... . . . ...
0 0 · · · ωnn

 =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

... . . . ...
0 0 · · · σ2

n

 = diag
(
σ2

i

)

When the error term ϵ exhibits heteroskedasticity, we will find that:

• The LS estimator is still unbiased and consistent.
• The LS estimator is now inefficient.
• The usual estimator for V[b] (which has been s2(X ′X)−1 in previous chapters) is now inconsistent,

which invalidates hypothesis testing.

A solution to the inefficiency of LS is to use the generalized least squares (GLS) or feasible (FGLS)
estimator, which also takes care of the inconsistency of the standard errors of b. A common practice,
however, is to ignore the inefficiency of LS and use a robust estimator for V[b] (such as White’s
heteroskedastic robust covariance estimator).

Load and plot a dataset that potentially has heteroskedasticity (see Figure 11.1):
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ccard <- read.csv("https://rtgodwin.com/data/creditcard.csv")
plot(ccard$income, ccard$avgexp)

Figure 11.1: Credit card expenditure data possibly exhibits heteroskedasticity.

11.1 Statistical properties of LS estimation in the presence of heteroskedasticity
Recall the proof that the LS estimator is unbiased:

b =
(
X ′X

)−1
X ′y =

(
X ′X

)−1
X ′(Xβ + ϵ)

= β +
(
X ′X

)−1
X ′ϵ

E(b) = β +
(
X ′X

)−1
X ′E(ϵ) = β

We need to use assumption A.3 and A.5 to establish this result, but we do not need A.4. Hence,
heteroskedasticity does not affect the unbiasedness property of LS. Similarly, plim[b] = β whether the
error term is heteroskedastic or not. (The IV and NLS estimators will also be consistent in the presence
of heteroskedasticity).

Now, let’s consider the covariance matrix of our LS estimator under heteroskedasticity:

V (b) = V
[
β +

(
X ′X

)−1
X ′ϵ

]
= V

[(
X ′X

)−1
X ′ϵ

]
=
[(

X ′X
)−1

X ′V (ϵ)X
(
X ′X

)−1
]

=
[(

X ′X
)−1

X ′σ2ΩX
(
X ′X

)−1
]

̸=
[
σ2 (X ′X

)−1
]

where we have used assumption 11.1 instead of A.4. We can see that if Ω = In then we get the usual
expression for V (b).

The usual computer output (for example from summary()), will be using s2 (X ′X)−1, which is the
wrong formula! The standard errors, t-statistics, confidence intervals, will all be incorrect. The usual
estimator for the covariance matrix of b, namely s2 (X ′X)−1, will be an inconsistent estimator of the
true covariance matrix of b.

The LS estimator will turn out to be inefficient under heteroskedasticity, but it is easiest to show this
after we develop the generalized least squares (GLS) estimator, and so we postpone this discussion for
later. For now, we turn to the most pressing issue - the inconsistency of the estimator for the covariance
matrix of b.
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11.2 White’s heteroskedastic consistent covariance matrix
If we knew Σ, then the “estimator” of the covariance matrix for b would just be:

ˆV[b] =
[(

X ′X
)−1

X ′ΣX
(
X ′X

)−1
]

(11.2)

The covariance matrix in equation 11.2 is known as a sandwich covariance matrix. In practice, V[ϵ] = Σ
will usually be unknown and need to be estimated. But since Σ is n × n and explodes as n → ∞, it
seems hopeless to try to get a consistent estimator for Σ. However, we can find a consistent estimator
when we consider the entire middle of the sandwich.

For asymptotic theory, what we actually need is an estimator for the covariance matrix of
√

n(b−β),
not β. By distributing the factor n we can rewrite equation 11.2 as:

ˆV[b] = 1
n

[( 1
n

X ′X

)−1 ( 1
n

X ′ΣX

)( 1
n

X ′X

)−1
]

where we see that we need to find a consistent estimator of 1
nX ′ΣX. While Σ is n × n and explodes as

n → ∞, the matrix 1
nX ′ΣX is a k × k symmetric matrix, and has k distinct elements in the diagonal

(with autocorrelation there would be 1
2(k2 + k) distinct elements).

Let Q∗ =
(

1
nX ′ΣX

)
. In the case of just heteroskedasticity (for autocorrelation we would have xix

′
j

terms), Q∗ becomes:

Q∗ = 1
n

n∑
i=1

σ2
i xix

′
i

White (1980) showed that if we define

S0 = 1
n

n∑
i=1

e2
i xix

′
i

then

plim (S0) = Q∗

Since LS is still consistent under heteroskedasticity, the residuals e are still consistent estimators for ϵ.
This means that we can estimate the model by LS, get the residuals e, and then a consistent estimator
of V[b] will be:

ˆV[b] = 1
n

[( 1
n

X ′X

)−1
(

1
n

n∑
i=1

e2
i xix

′
i

)( 1
n

X ′X

)−1
]

In practice we ignore the n−1 and use:

ˆV[b] =
(
X ′X

)−1
(

n∑
i=1

e2
i xix

′
i

)(
X ′X

)−1 (11.3)

which amounts to replacing every diagonal element of Σ with a squared residual. The sandwich estimator
in 11.3 is called a heteroskedasticity-consistent covariance matrix estimator, and is valid regardless of
the unknown form of the heteroskedasticity. Taking the square roots of the diagonal elements of 11.3
gives us the het-consistent, or “robust” standard errors.

There are alternatives to the sandwich estimator in 11.3. Alternate versions include multiplying the
entire matrix by n/(n − k) as a degrees of freedom correction, or using e2

i /(1 − hi) instead of just e2
i ,
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where hi is the ith diagonal element of the PX matrix. All of the alternatives are consistent estimators,
and differ in their finite sample properties, which vary depending on the data.

As a result of using a sandwich estimator such as in 11.3, the t-statistics, F-statistic, standard errors,
confidence intervals, etc. will be modified, but only in a manner that is appropriate asymptotically. This
means that the usual test statistics will be unreliable in finite samples, and instead of the t-distribution
and F-distribution we should use their asymptotic approximations: the standard Normal and Chi-square
distributions.

Example 11.1 — Robust standard errors. Use the credit card expenditure data to estimate the model:

avgexp = β1 + β2age + β3ownrent + β4income + β5income2 + ϵ

Download the data:

ccard <- read.csv("https://rtgodwin.com/data/creditcard.csv")

Estimate the model assuming homoskedasticity:

ccard.mod <- lm(avgexp ~ age + ownrent + income + I(income^2), data = ccard)
summary(ccard.mod)

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -237.147 199.352 -1.190 0.23841
age -3.082 5.515 -0.559 0.57814
ownrent 27.941 82.922 0.337 0.73721
income 234.347 80.366 2.916 0.00482 **
I( income ^2) -14.997 7.469 -2.008 0.04870 *

If we have heteroskedasticity, then the standard errors, t-statistics, and associated p-values, are all
wrong! Install and load a package capable of “sandwich” covariance matrix estimation:

install.packages("sandwich")
install.packages("lmtest")
library(sandwich)
library(lmtest)

and get White’s heteroskedastic consistent covariance matrix estimator from equation 11.3 (we can
change the type to use alternate estimators):

coeftest(ccard.mod, vcov = vcovHC(ccard.mod, "HC1"))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -237.1465 220.7950 -1.0741 0.28665
age -3.0818 3.4226 -0.9004 0.37112
ownrent 27.9409 95.5657 0.2924 0.77090
income 234.3470 92.1226 2.5439 0.01328 *
I( income ^2) -14.9968 7.1990 -2.0832 0.04105 *

The standard errors have either decreased or increased, and some are quite different! The significance
of one of the regressors has changed, for example. Ignoring the possibility of heteroskedasticity, and
thus using the wrong standard errors, can invalidate hypothesis testing.

11.3 Testing for homoskedasticity
Heteroskedasticity reduces the efficiency of the LS estimator of β (we still haven’t showed this) and
has serious implications for the properties of the associated standard errors, confidence intervals, and
tests. It would be very useful to have a test of the hypothesis that the errors in our regression model
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are homoskedastic, against the alternative that they exhibit some sort of heteroskedasticity. Because
LS is still a consistent estimator of β even if the errors are heteroskedastic, we can use the LS residuals
to construct tests that will still be (at least) asymptotically valid.

11.3.1 White’s test
Consider the following null and alternative hypotheses under the standard population model:

H0 : σ2
i = σ2 ; i = 1, 2, . . . , n vs. HA : Not H0

The alternative hypothesis is very general, and no specific form of heteroskedasticity has been declared.
To implement the test:

1. Estimate the model by LS, and get the residuals, ei ; i = 1, 2, . . . , n.
2. Using LS again, regress the e2

i values on each of the x’s in the original model; their squared values;
all of the cross-products of the regressors; and an intercept. We are using the information in X
to approximate any possible unknown form of heteroskedasticity.

3. The nR2 from the regression in Step 2 is asymptotically χ2
(p) (Chi-square distributed) if H0 is

true; where p is the number of parameters that are estimated at Step 2.
4. Reject H0 in favour of HA if the p-value for the nR2 statistic from the chi-square distribution is

small.

Note the limitation of this test:

• It is valid only asymptotically.
• The test is “non-constructive”, in the sense that if we reject H0, we don’t know what form of

heteroskedasticity we may have.
• This means that it won’t be clear what form the GLS estimator (in the next section) should take.

Even though White’s test is non-constructive, it can provide enough information to alert us to use
White’s heteroskedasticity-consistent estimator of V(b). In fact, there is little, if anything, to be lost in
using this covariance matrix estimator, as long as the sample is large. This is because homoskedasticity
is just a special case of heteroskedasticity. That is, the heteroskedastic consistent covariance matrix
estimators do not rule out the possibility of homoskedasticity.

Example 11.2 — White’s test in R Use the data and model from Example 11.1 to test for the presence
of heteroskedasticity:

ccard <- read.csv("https://rtgodwin.com/data/creditcard.csv")
ccard.mod <- lm(avgexp ~ age + ownrent + income + I(income^2), data = ccard)

Install and load a package:

install.packages("skedastic")
library(skedastic)

and calculate White’s test using the white() function:

white(ccard.mod, interactions = TRUE)

statistic p.value parameter method alternative
<dbl > <dbl > <dbl > <chr > <chr >

1 14.3 0.426 14 White ’s Test greater

The White test statistic is 14.3, with a Chi-square p-value of 0.426. We fail to reject the null of
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homoskedasticity after all! Are the degrees of freedom for the Chi-square distribution right?

Example 11.3 — White’s test by hand Use the data from Example 11.1 and 11.2 to test for the presence
of heteroskedasticity “by hand”. Get the squared residuals from the estimated model:

ccard <- read.csv("https://rtgodwin.com/data/creditcard.csv")
ccard.mod <- lm(avgexp ~ age + ownrent + income + I(income^2), data = ccard)
ccard.res.sq <- ccard.mod$residuals ^ 2

and regress the squared residuals on all regressors, squared regressors, and cross-products:

summary(lm(ccard.res.sq ~ age + ownrent + income + I(income^2)
+ I(age^2) + age*ownrent + age*income + age*I(income^2)
+ ownrent^2 + ownrent*income + ownrent*I(income^2)
+ I(income^2) + I(income^3)
+ I(income^4), data=ccard))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1637390.4 1290979.7 1.268 0.2097
age 5366.2 48893.8 0.110 0.9130
ownrent 812036.8 991630.2 0.819 0.4161
income -2021697.6 1053559.1 -1.919 0.0598 .
I( income ^2) 669055.3 365666.7 1.830 0.0724 .
I(age ^2) -424.1 627.5 -0.676 0.5018
I( income ^3) -86805.3 51162.6 -1.697 0.0950 .
I( income ^4) 3762.7 2277.4 1.652 0.1038
age: ownrent 4661.7 14424.6 0.323 0.7477
age: income 11499.9 15614.3 0.736 0.4643
age:I( income ^2) -1093.3 1568.1 -0.697 0.4884
ownrent : income -510192.3 469792.6 -1.086 0.2819
ownrent :I( income ^2) 51835.1 61799.8 0.839 0.4050
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 274600 on 59 degrees of freedom
Multiple R- squared : 0.199 , Adjusted R- squared : 0.0361
F- statistic : 1.222 on 12 and 59 DF , p-value: 0.2905

We are essentially looking at the “overall fit” of this auxiliary regression, or the “joint significance”
of all of the explanatory variables. Typically we would look at the p-value of 0.2905 for the joint
significance. But this is an F-test, and we are in an asymptotic setting. So, instead of the F-test
and F-distribution we use the Wald test and the Chi-square distribution. The Wald test statistic is
nR2 = 72 × 0.199 = 14.3 (same as from example 11.2) and the associated p-value is:

1 - pchisq(72 * 0.199, 14)

[1] 0.4255717

But the degrees of freedom of 14 is wrong! Two of the cross-products are redundant and have been
dropped from the auxiliary regression, leaving us with p = 12 and the proper p-value is:

1 - pchisq(72 * 0.199, 12)

[1] 0.280255

The white() provides the wrong p-value. In any case, we cannot reject the null of homoskedasticity
using White’s test, even though heteroskedasticity seems apparent from Figure 11.1. What would be



11.4 Generalized least squares 107

the safe thing to do in this case?

11.4 Generalized least squares
We now turn to the estimation of β, taking into account when the error term is heteroskedastic. Using
this information should enable us to improve the efficiency of the LS estimator.

In the present context, (Ordinary) LS ignores some important information, and we’d anticipate that
this will result in a loss of efficiency when estimating β. Intuitively, observations with less variance
should be given more weight than observations with high variance. The observations with smaller
variance are more “valuable”.

Let’s see how to obtain an efficient (also linear and unbiased) estimator. Recall that we are allowing
a general form for the covariance matrix of the error term: V(ϵ) = Σ. Generally Σ will be unknown.
However, to begin with, let’s consider the case where it is actually known.

Clearly, Σ must be symmetric, as it is a covariance matrix. Assume that Σ is also positive-definite.
Then, Σ−1 is also positive-definite, and so there exists a non-singular matrix, P , such that Σ−1 = P ′P .
Now, if:

Σ =

 σ2
1 · · · 0
... . . . ...
0 · · · σ2

n


then

P =


1

σ1
. . . 0

... . . . ...
0 . . . 1

σn


Consider the population model where all usual assumptions hold except A.4:

y = Xβ + ϵ ; ϵ ∼ [0, Σ]

Recall the Gauss-Markhov theorem in Section 5.3.3. A critical assumption in the Gauss-Markhov
theorem is A.4. So, the LS estimator, under heteroskedasticity, is inefficient. However, consider pre-
multiplying the population model by P :

Py = PXβ + Pϵ (11.4)

or write:

y∗ = X∗β + ϵ∗

where ∗ denotes that the variable has been transformed using P . Note that, because P is a diagonal
matrix, we are simply scaling the ith observation of all variables by the reciprocal of the square root of
each error term’s variance:

1
σi

yi = β1
1
σi

+ β2
1
σi

xi2 + · · · + βk
1
σi

xik + 1
σi

xi2ϵi (11.5)

Applying LS to the transformed model in 11.4 (or equivalently model 11.5), yields the generalized least
squares (GLS) estimator. This is also known as “weighted least squares”, since we are weighting each
observation using the inverse of it’s standard deviation. Note that observations with high variance
receive less weight.
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Applying LS to the transformed model 11.4 gives the formula for the GLS estimator:

β̂GLS =
[
X∗′X∗]−1

X∗′y∗

=
[
(PX)′(PX)

]−1 (PX)′(Py)

=
[
X ′P ′PX

]−1
X ′P ′Py

=
[
X ′Σ−1X

]−1
X ′Σ−1y

(11.6)

11.4.1 Properties of the GLS estimator
Since Σ is a non-random matrix, so is P . This means that if we have assumptions A.3 and A.5 to begin
with, transforming the data using P will have no effect on these assumptions. For example:

E [ϵ∗] = E[Pϵ] = PE[ϵ] = 0

Very importantly, the transformed model attains assumption A.4 (this was the whole point of trans-
forming the model in the first place; to recover A.4):

V [ϵ∗] = V [Pϵ]
= PV (ϵ)P ′

= P (Σ) P ′ = PΣP ′

Because P is both square and non-singular, note that:

PΣP ′ = P
(
Σ−1

)−1
P ′

= P
(
P ′P

)−1
P ′

= PP −1 (P ′)−1
P ′ = I

and so:

V [ϵ∗] = I (11.7)

The transformed model, y∗ = X∗β + ϵ∗, has an error-term that satisfies the usual assumptions. In
particular, the transformed model is homoskedastic. So, if we apply (ordinary) least squares to the
model, y∗ = X∗β +ϵ∗, we’ll get the BLU estimator of β, by the Gauss-Markhov Theorem. This means
that ordinary LS, under heteroskedasticity, is inefficient.

Moreover, all of the results that we established with regard to testing for linear restrictions and incorpo-
rating them into our estimation, also apply to GLS if we make some obvious modifications. For example,
we would estimate estimate sigma2 using σ̂2 = e′

GLSeGLS/(n−k), and to test H0 : Rβ = q vs. HA :
Rβ ̸= q we could use the F-statistic F = (Rβ̂GLS − q)′

[
R (X∗′X∗)−1 R′

]−1
(Rβ̂GLS − q)/Jσ̂2, where

X∗ is the transformed data.

11.4.2 Unknown σ2

In this section we highlight that, in order to perform GLS, all we really need to know is the proportionality
of the variances between observations, not the actual variance.

An important difference between the GLS estimator in equation 11.6, and the ordinary LS estimator,
is that it appears to require that σ2 is known to be 1 (in equation 11.7, σ2 = 1). But, if we write:

V [ϵ] = Σ = σ2Ω
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then we will see that as long as Ω is known, we can obtain the GLS estimates. That is, all we need to
know is the proportionality of the difference in variance between observations. For example, if we knew
that some observations had twice as much variance as others, we could perform GLS without knowing
the exact magnitude of the variances. If σ2 is unknown but Ω is known to be:

Ω =

 ω11 · · · 0
... . . . ...
0 · · · ωnn


then the P matrix used to transform the data can instead be written as:

P =


ω11

−1/2 . . . 0
... . . . ...
0 . . . ωnn

−1/2


The GLS estimator becomes:

β̂GLS =
[
X ′Σ−1X

]−1
X ′Σ−1y

=
[
X ′
(
σ2Ω

)−1
X

]−1
X ′
(
σ2Ω

)−1
y

=
[
X ′Ω−1X

]−1
X ′Ω−1y

(11.8)

which amounts to weighting the data by the inverse of the square root of the proportionality constants
ωii:

ω
− 1

2
ii yi = β1ω

− 1
2

ii + β2

(
ω

− 1
2

ii xi2

)
+ · · · +

(
ω

− 1
2

ii ϵi

)

Now we can see that the error term in the transformed model has variance V[ϵ∗] = σ2In, when Σ is
unknown, but Ω is known.

11.4.3 Clustering
In some cases we will actually know the form of the heteroskedasticity, so we can apply GLS directly.
Suppose that we have the usual population model:

yi = β1 + β2xi2 + · · · + βkxik + ϵi

E [ϵi] = 0 ; var . [ϵi] = σ2 ; i.i.d

However, suppose that we only observe “grouped” data, rather than the observations on the individual
agents. This happens frequently in practice, when data are released in this way to preserve confiden-
tiality.

Suppose there are m groups (e.g., income groups), with nj observations in the jth group; j =
1, 2, . . . , m. The model that we can actually estimate is of the form:

ȳj = β1 + β2x̄j2 + · · · + βkx̄jk + ϵ̄j ; j = 1, 2, . . . , m

That is, rather than seeing the data at an individual level, we are seeing the data averaged over each
group. Clearly, averaging the data over the groups does not change the fact that the error term is still
mean zero:

E [ϵ̄j ] = E

[
1
nj

nj∑
i=1

ϵi

]
=
[

1
nj

nj∑
i=1

E (ϵi)
]

= 0
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but it does change the variance of the error term across groups:

var · [ϵ̄i] = var ·
[

1
nj

nj∑
i=1

ϵi

]
=
[

1
n2

j

nj∑
i=1

var . (ϵi)
]

=
(
njσ2/n2

j

)
=
(
σ2/nj

)
.

The nj values are generally reported, so we know the proportionality of the error covariance matrix:

σ2Ω = σ2

 1/n1 · · · 0
... . . . ...
0 · · · 1/nm


Because Ω is known, we can compute the GLS estimator for β directly using β̂GLS =

[
X ′Ω−1X

]−1
X ′Ω−1y.

11.5 Feasible generalized least squares (FGLS)
In many cases the Ω matrix will be unknown. In order to be able to implement the GLS estimator,
in practice, we’re usually going to have to provide a suitable estimator of Ω. We’ll want to obtain an
estimator that is at least consistent, and place this into the formula for the GLS estimator, yielding:

β̂F GLS =
[
X ′Ω̂−1X

]−1
X ′Ω̂−1y

A problem is that the Ω matrix is (n × n), and it has n distinct elements. However, we have only n
observations on the data. This precludes obtaining a consistent estimator. We need to constrain the
elements of Ω in some way. In practice, this won’t be a big problem, because usually there will be lots
of “structure” on the form of Ω. Typically, we’ll have Ω = Ω(θ), where the vector, θ has low dimension.

For example, we can specify the skedastic function (a function that determines a variable’s condi-
tional variance):

var(ϵi) = exp(ziθ) (11.9)

where zi are regressors that may contain some or all of xi, θ is a parameter vector to be estimated,
and the exponent keeps the values of the function positive for any θ (variances must be positive). To
obtain a consistent estimator of θ, we can run the auxiliary regression using LS:

log e2
i = ziθ + εi

to find the estimates θ̂. The elements of the Ω matrix can then be estimated using the predicted values
from the above regression:

ω̂ii =
(
exp

(
ziθ̂

))1/2
(11.10)

finally, the FGLS estimates are obtained by applying LS to data that has been weighted using the fitted
values ω̂ii from equation 11.10.

Approaches to obtain Ω̂ using the LS residuals, such as above, are valid because LS is consistent
even in the presence of heteroskedasticity. This extends to the residuals: they are consistent estimators
for the unknown error term. The residuals can be used to test for the presence of heteroskedasticity (as
in White’s test), construct heteroskedastic-robust covariance estimators, and as we have now just seen,
estimate the unknown form of heteroskedasticity.

Obtaining a consistent estimator for Ω in turn ensures that the FGLS estimator is also consistent
(the proof is difficult and not shown here). The FGLS estimator will also be asymptotically efficient.
Little can be said about its finite sample properties however, and it will usually be biased, with the bias
depending on the form of Ω and our choice of Ω̂.
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11.6 Exercises
1. Explain the difference between homoskedasticity and heteroskedasticity.
2. What are the consequences of heteroskedasticity?
3. Briefly explain some of the ways that we can deal with heteroskedasticity.
4. Derive the covariance matrix for b under the assumption of heteroskedasticity.
5. What is White’s heteroskedastic consistent covariance matrix estimator?
6. Should the t-distribution / F-distribution be used in hypothesis testing, after using White’s esti-

mator for standard errors?
7. Explain White’s test for heteroskedasticity. What is the null and alternative? How can you

implement the test? What is the intuition behind the test?
8. Derive the GLS estimator, by transforming the error term so that it is homoskedastic.
9. Show that LS is inefficient in the presence of heteroskedasticity, by arguing that GLS is efficient.

10. Explain how we only need to know the relative differences in variance between observations (the
proportionality of the variances), in order to perform GLS.

11. Show how to implement GLS when the data is “clustered”.
12. Explain the difference between GLS and FGLS.
13. Using the data from Example 11.1, compare the p-value for the significance of the age variable

using the regular covariance matrix estimator (under homoskedasticity), to the p-value using
White’s robust standard errors.

14. Using the following code to estimate a wage model:

cps <- read.csv("http://rtgodwin.com/data/cps1985.csv")
cps.mod <- lm(log(wage) ~ education + gender + age + experience

+ gender * education, data = cps)
summary(cps.mod)

test for heteroskedasticity. Use White’s heteroskedastic robust standard errors, regardless of the
results of the test. Which variables are significant under homoskedasticity vs. heteroskedasticity?



Chapter 12

Introduction to Time Series

This is not a comprehensive introduction. This is a short collection of topics that I find important and
interesting, namely (i) the inconsistency of LS under lagged dependent variables and autocorrelated
errors, and (ii) spurious regressions due to random walks.

12.1 What is a time series
A time series is a single occurrence of a random event. The sequence of observations, {yt}t=+∞

t=−∞, is a time
series process. There is no counterpart to repeated sampling for a time series. We observe realizations
of this process in a time window, t = 1, . . . , T . The frequency of observations are important, but the
length of the window is arguably more important. Asymptotics involves considering an increasingly
longer window.

Quarterly time series data on Canadian GDP, CPI, unemployment rate, and average target interest
rates from 1993Q1 to 2022Q2 (see Figure 12.1):

can <- read.csv("https://rtgodwin.com/data/canseries.csv")
plot(can$time, can$CPI, type="l")
plot(can$time, can$GDP, type="l")
plot(can$time, can$unemployment, type="l")
plot(can$time, can$interest, type="l")

Time series models typically seek to forecast (predict) future values of the series, and sometimes look
to estimate causal effects of policies or interventions (like the effect of interest rates on inflation). In
order to model a time series, yt, it is typical to include:

• contemporaneous factors, xt

• lagged factors, xt−1, xt−2, . . .
• its own past, yt−1, yt−2, . . .
• a time trend, t
• seasonal dummies, d
• disturbances (innovations), ϵt

For example:

yt = β1 + β2t + β3dt + β4xt + β5yt−1 + ϵt

12.2 Autocorrelation
In time series models, the past is very important! Often a very good predictor of yt are the yt−1, yt−2, . . . .
This suggests that the error term, ϵt, also depends on its own past values. That is, even after including
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Figure 12.1: Various Canadian time series from 1993Q1 to 2022Q2.

other time series (xt) in the regression, there are likely still missing time series in ϵt that depend on
their own past. This means that the error term will very likely violate A.4. The error term is correlated
to its own past values. This is called serial correlation, or autocorrelation.

In the case of autocorrelation, the off-diagonal elements of V (ϵ) will be non-zero. The particular
values they take will depend on the form of autocorrelation. That is, they will depend on the pattern
of the correlations between the elements of the error vector. For example, the covariance matrix of the
error term will look like:

V (ϵ) =

 σ2 σ12 σ13
σ12 σ2 σ23
σ13 σ23 σ2


If the errors themselves are autocorrelated, often this will be reflected in the regression residuals also
being autocorrelated. That is, the residuals will follow some sort of pattern, rather than just being
random. Let’s take a look at the quarterly Canadian GDP series. We know from Section 4.4.2 how to
de-seasonalize (and de-trend) a time series:

# Create quarterly dummies
n <- 118
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can$q4 <- can$q3 <- can$q2 <- can$q1 <- 0
can$q1[seq(1, n, 4)] <- 1
can$q2[seq(2, n, 4)] <- 1
can$q3[seq(3, n, 4)] <- 1
can$q4[seq(4, n, 4)] <- 1

# Regress GDP on a time trend and quarterly dummies
gdp.mod <- lm(can$GDP ~ can$time + can$q2 + can$q3 + can$q4)

# Collect the residuals, which are de-trended, de-seasonalized GDP
gdp.resid <- gdp.mod$residuals

Now that we have de-trended and de-seasonalized GDP, let’s try to explain GDP in terms of its past
values. We’ll estimate the equation (where GDP ⋆ is the de-trended, de-seasonlaized series):

GDP ⋆
t = β0 + β1GDP ⋆

t−1 + β2GDP ⋆
t−2 + β3GDP ⋆

t−3 + β4GDP ⋆
t−4 + β5GDP ⋆

t−5 + ϵt

We need to regress GDP on it’s lagged values (notice that we lose 5 observations):

gdp.mod.lag <- lm(gdp.resid[6:118] ~ gdp.resid[5:117] + gdp.resid[4:116]
+ gdp.resid[3:115] + gdp.resid[2:114] + gdp.resid[1:113])

summary(gdp.mod.lag)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -5.7951 1181.7694 -0.005 0.99610
gdp.resid [5:117] 0.9013 0.1003 8.985 1e -14 ***
gdp.resid [4:116] -0.3254 0.1336 -2.435 0.01655 *
gdp.resid [3:115] 0.2336 0.1389 1.682 0.09551 .
gdp.resid [2:114] 0.1455 0.1343 1.083 0.28111
gdp.resid [1:113] -0.3140 0.1050 -2.989 0.00347 **
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 12330 on 107 degrees of freedom
Multiple R- squared : 0.5273 , Adjusted R- squared : 0.5052
F- statistic : 23.87 on 5 and 107 DF , p-value: 4.666e -16

Now, we’ll once again get the residuals from this model, and plot them over time (see Figure 12.2):

gdp.lag.resid <- gdp.mod.lag$residuals
plot(can$time[6:118], gdp.lag.resid, type="l")

Figure 12.2 shows some sort of patern in the residuals, indicating that the error term is autocorrelated.
The time series model that we estimated is simple, and we could include explanatory xt, xt−1, . . .
variables. Even when we do so, however, we are unlikely to be able to completely account for the
autocorrelation apparent in the residuals.

If the errors of our model are autocorrelated, then the OLS estimator of β usually will be unbiased
and consistent, but it will be inefficient. In addition V (β) will be computed incorrectly, and the standard
errors, etc., will be inconsistent. (Same situation as with heteroskedasticity). In general time series
models are concerned with testing for the presence/absence of autocorrelation, estimating the form of
autocorrelation (the V (β) matrix), and then estimating models where the errors are autocorrelated.
In this introduction, we will not look at these methods. We will consider two ways of modelling
autocorrelation: an AR process and an MA process. We will also consider a limiting form of an AR
process.
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Figure 12.2: The residuals from our time series model are autocorrelated.

12.2.1 Autoregressive process
ϵt = ρϵt−1 + ut ; ut ∼ i.i.d. N

[
0, σ2

u

]
; |ρ| < 1

This is an AR(1) model for the error process. More generally:

ϵt = ρ1ϵt−1 + ρ2ϵt−2 + · · · + ρpϵt−p + ut ; ut ∼ i.i.d. N
[
0, σ2

u

]
This is an AR(p) model for the error process. [e.g., p = 4 with quarterly data.] An AR process can be
used to model any time series, not just the error term. Notice that we used an AR(5) process in our
GDP example above.

12.2.2 Moving average process
ϵt = ut + ϕut−1 ; ut ∼ i.i.d.N

[
0, σ2

u

]
This is an MA(1) model for the error process. More generally:

ϵt = ut + ϕ1ϵt−1 + · · · + ϕqut−q ; ut ∼ i.i.d. N
[
0, σ2

u

]
This is an MA(q) model for the error process. We can combine both types of process into an ARMA(p,
q) model:

ϵt = ρ1ϵt−1 + ρ2ϵt−2 + · · · + ρpϵt−p + ut + ϕ1ut−1 + · · · + ϕqut−q ; ut ∼ i.i.d. N
[
0, σ2

u

]
12.2.3 Stationarity

Note that in the AR(1) process, we said that |ρ| < 1. This condition is needed to ensure that the process
is “stationary.” Suppose that the following three conditions are satisfied:

1. E [ϵt] = 0 ; for all t
2. var . [ϵt] = σ2 ; for all t
3. cov · [ϵt, ϵs] = γ|t−s| ; for all t, s; t ̸= s

Then we say that the time-series sequence, ϵt, is “Covariance Stationary”; or “Weakly Stationary”.
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Unless a time-series is stationary, we can’t identify and estimate the parameters of the process that is
generating its values.

Let’s see how this notion relates to the AR(1) model, introduced above. We have:

ϵt = ρϵt−1 + ut

ϵt = ρ [ρϵt−2 + ut−1] + ut

= ρ2ϵt−2 + ρut−1 + ut

= ρ2 [ρϵt−3 + ut−2] + ρut−1 + ut

= ρ3ϵt−3 + ρ2ut−2 + ρut−1 + ut

Continuing in this way, eventually, we get:

ϵt = ut + ρut−1 + ρ2ut−2 + · · · (12.1)

This is an infinite order MA process. The value of ϵt embodies the entire past history of the ut values.

From equation 12.1, E(ϵt) = 0, and:

var (ϵt) = var . (ut) + var . (ρut−1) + var .
(
ρ2ϵt−2

)
+ · · ·

= σ2
u + ρ2σ2

u + ρ4σ2
u + · · ·

Question: Under what conditions will this series converge?

The series will converge to σ2
u

(
1 − ρ2)−1, as long as

∣∣ρ2∣∣ < 1, and this in turn requires that |ρ| < 1.

This is a necessary condition needed to ensure that the process ϵt is stationary, because if this condition
isn’t satisfied, then var(ϵt) is infinite.

If we have a (stationary) AR(1) process, for example, then it can be shown that the covariance matrix
for ϵ is:

V (ϵ) = σ2
uΩ = σ2

u

(1 − ρ2)


1 ρ · · · ρn−1

ρ 1 . . . ρn−2

... . . . . . . ...
ρn−1 ρn−2 . . . 1

 (12.2)

So, if we can estimate ρ (for example by looking at the residuals), we can estimate the entire covariance
matrix and use FGLS to obtain an estimator that is efficient and has consistent standard errors.

12.3 Inconsistency of LS with AR errors and lagged dependent variables
In the presence of autocorrelation, in general b will still be a consistent estimator. However, there is one
important situation where it will be inconsistent. This will be the case if the errors are autocorrelated,
and one or more lagged values of the dependent variable enter the model as regressors. A quick way to
observe that inconsistent estimation will result in this case is as follows. Suppose that:

yt = βyt−1 + ϵt ; |β| < 1
ϵt = ρϵt−1 + ut ; ut ∼ i.i.d.

[
0, σ2

u

]
; |ρ| < 1 (12.3)
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Now subtract ρyt−1 from the expression for yt in equation 12.3:

(yt − ρyt−1) = (βyt−1 + ϵt) − ρ (βyt−2 + ϵt−1) (12.4)

or:

yt = (β + ρ)yt−1 − βρyt−2 + (ϵt − ρϵt−1)
= (β + ρ)yt−1 − βρyt−2 + ut

(12.5)

So, if we estimate the model with just yt−1 as the only regressor, then we are effectively omitting a
relevant regressor, yt−2, from the model. This amounts to imposing a false (zero) restriction on the
coefficient vector, and we know that this causes OLS to be not only biased, but also inconsistent.

12.4 Random walk
Working with non-stationary data is dangerous. A non-stationary time series where:

yt = yt−1 + ϵt

is said to be integrated of order one I(1), or is said to follow a random walk. The danger arises as we can
easily find what is called a “spurious relationship” between two unrelated random walks. For example,
suppose that xt also follows a random walk:

xt = xt−1 + εt

Remember that both of these series have infinite variance! Now, what happens if we regress one random
walk on another unrelated random walk? We shouldn’t find any relationship, because the two series are
unrelated, right? Right?? Granger and Newbold1 performed a simple simulation showing that such a
regression yields spurious results.

Try running the following code in R, with increasing sample sizes:

n <- 100
y <- x <- 0
for(i in 2:n){
y[i] <- y[i - 1] + rnorm(1)
x[i] <- x[i - 1] + rnorm(1)

}
plot(y, type = "l", col = "red", ylim = c(min(x,y),max(x,y)))
points(x, type = "l", col = "blue")
summary(lm(y ~ x))

As the sample size increases, the t-statistic on β1 goes to infinity, and the R2 goes to 1, even though
there is no relationship! This is because both series have infinite variance. For example, let’s try (see
Figure 12.3 for the two generated random walks):

set.seed(7010)
n <- 5000
y <- x <- 0
for(i in 2:n){

y[i] <- y[i - 1] + rnorm(1)
x[i] <- x[i - 1] + rnorm(1)

}
plot(y, type = "l", col = "red", ylim = c(min(x,y),max(x,y)))
points(x, type = "l", col = "blue")

1Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of econometrics, 2(2), 111-120.
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summary(lm(y ~ x))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -10.94998 0.58101 -18.85 <2e -16 ***
x 1.72176 0.01613 106.74 <2e -16 ***
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 30.54 on 4998 degrees of freedom
Multiple R- squared : 0.6951 , Adjusted R- squared : 0.695
F- statistic : 1.139e+04 on 1 and 4998 DF , p-value: < 2.2e -16

Figure 12.3: Two random walks that produce a spurious relationship.

A common way to deal with a random walk is to first difference the data. This will ensure that we
don’t find a spurious relationship (as long as we have the order of integration correct):

yd <- y[2:5000] - y[1:4999]
xd <- x[2:5000] - x[1:4999]
summary(lm(yd ~ xd))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.02783 0.01414 -1.968 0.0491 *
xd 0.01928 0.01418 1.359 0.1741
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9998 on 4997 degrees of freedom
Multiple R- squared : 0.0003697 , Adjusted R- squared : 0.0001696
F- statistic : 1.848 on 1 and 4997 DF , p-value: 0.1741

12.5 Exercises
1. How can you de-seasonalize and de-trend a time series? Why would you want to do so?
2. How can we tell if the error term is autocorrelated?
3. What are some of the consequences of autocorrelation?
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4. What is the difference between an AR(1) and MA(1) process?
5. Show that an AR process has “infinite memory”? In words, what does this mean?
6. Derive the variance of an AR(1) error term, and note the condition on ρ so that the series converges.
7. Show that LS is inconsistent when the model includes a lagged dependent variable, and the error

term follows an AR(1) process.
8. Show that the variance of a random walk is infinite.
9. Explain a “spurious regression” in the context of two random walks.



Chapter 13

Maximum likelihood estimation

Least squares does not work when the dependent variable (y) is:

1. The length of time it takes for something to happen (a strike, an insurance claim, an unemployment
spell)

2. The number of things that happen (doctor visits, number of customers, bank failures, number of
patents)

3. A yes/no dummy variable (whether person is in the labour force, whether a customer makes a
purchase)

In these cases, the dependent variable is limited in some way. In (1) the time must be positive, yi ≥ 0.
In (2) the counts are not continuous and non-negative, yi = 0, 1, 2, . . . . In (3) the values take on only
0 or 1. The linear model, and least-squares, has no way of recognizing or accounting for the limited
nature of the dependent variable. A model estimated by LS will provide predicted values that are not
allowed for y, and in most cases is misspecified so that the LS estimator is inconsistent.

In cases such as above, if we are willing to specify a probability distribution for y, then we can use
maximum likelihood estimation (MLE). (Anytime we are willing to choose a distribution for y, we can
use MLE). MLE is not the only option available: GMM, Bayesian, non-parametric, and others; but
MLE has excellent properties and is a popular estimation strategy.

• MLE proposed by R. A. Fisher, 1921-1925.
• MLE is a parametric method.
• That is, we assume each sample data is generated from a known probability distribution function

(pdf), p (yi | θ). i.e. yi comes from a “family”.

Consider that we have random data y = {y1, . . . , yn}, and a parameter vector θ = (θ1, . . . , θk)′. Our
objective is to estimate θ. The probability of jointly observing the data is:

p (y1, . . . , yn | θ) “joint pdf”

We can view p (y1, . . . , yn | θ) in two different ways:

1. As a function of {y1, . . . , yn}, given θ.
2. As a function of (θ1, . . . , θk), given y. i.e., the data are given, the parameters vary.

The latter is called the likelihood function. Note:

L(θ) = L (θ | y1, . . . , yn) = p (y1, . . . , yn | θ)
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Definition 13.1 — Maximum likelihood estimator (MLE) The MLE of θ (call it θ̃) is that value of θ
such that L(θ̃) > L(θ̂), for all other θ̂.

The idea behind MLE: “given the yi’s, what is the most likely θ to have generated such a sample?”

Note:

• θ̃ need not be unique.
• θ̃ should locate the global max. of L(θ).
• If the sample data are independent then L(θ | y) = p(y | θ) =

∏n
i=1 p (yi | θ).

• Any monotonic transformation of L(θ) leaves the location of the extremum unchanged, e.g.
log L(θ)

13.1 Some basic concepts and notation
1. Gradient/score vector:

[
∂ log L(θ)

∂θ

]
(k × 1)

2. Hessian matrix:
[

∂2 log L(θ)
∂θ∂θ′

]
(k × k)

3. Likelihood equations: ∂ log L(θ)
∂θ = 0 (k × 1)

The optimization problem is:

max
θ

n∏
i=1

L (θ | yi)

To obtain the MLE, θ̃, we solve the likelihood equation(s) and then check the second-order condition(s)
to make sure we have maximized (not minimized) L(θ). If the Hessian matrix is at least n.s.d., then
L(θ) is concave, and this is sufficient for a maximum. So, MLE is accomplished by:

1. Specifying the likelihood function.
• This involves writing down an equation which states the joint likelihood (or joint probability)

of observing the sample data, conditional on the unknown parameter values of the probability
distribution function.

• Independence of the y data is usually assumed (and will be for the purposes of this course).
• Given independence, the likelihood function is obtained by multiplying together the proba-

bility of each yi occurring.
2. Taking the natural log of the likelihood function. This usually simplifies the next step. The

location of the maximum will not change.
3. Taking the first derivative of the log-likelihood function with respect to all parameters, setting

each derivative equal to zero, and solving for the parameter values. The solution of the FOCs
provides the formulas for the MLEs.

4. Checking to make sure the estimator in (3) attains a maximum (not a minimum). This involves
taking the second derivatives of the log-likelihood function with respect to all parameters, so as
to construct the Hessian matrix. If the Hessian is n.s.d., then the MLE achieves a global max.

5. Obtaining the variance of the MLEs for use in hypothesis testing. A variance-covariance matrix
can be found by inverting the negative of the expected Hessian.

13.2 Properties of MLE
• MLE has very desirable asymptotic properties.
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• Namely, MLE is Best Asymptotically Normal.
• That is, under mild assumptions, ML estimators are consistent, asymptotically efficient, and

asymptotically Normally distributed.
• These properties are obtained by examining the asymptotic distribution of the MLE (which we

will not derive in class):
√

n
(
θ̃ − θ0

)
d→ N

[
0, IA−1(θ)

]
where

IA−1(θ) = lim
n→∞

( 1
n

[−E[H(θ)]]−1
)

• IA−1(θ) is the asymptotic information matrix, and H(θ) is the Hessian.
• The statement of the asymptotic distribution shows that the MLEs are consistent, asymptotically

normal, and asymptotically efficient.
• The efficiency result relies on the Cramer-Rao lower bound. The Cramer-Rao lower bound is a

theoretical minimum variance that any estimator can obtain. The MLE attains this minimum,
that is, IA−1(θ) is equal to the asymptotic Cramer-Rao lower bound.

The asymptotic distribution also allows us to see the variance of the MLEs in finite samples. The
variance-covariance of θ̃ for finite samples can be solved from the asymptotic variance:

var[
√

n(θ̃)] = n × var(θ̃) = 1
n

[−E[H(θ)]]−1

so,

var(θ̃) = [−E[H(θ)]]−1

The matrix −E[H] is termed the “Information Matrix” and is denoted by I(θ).
A very useful property of MLEs is their “invariance.” That is, the estimator for g(θ) is g(θ̃). Hence,

an estimator for the variance-covariance of θ̃ is:

ṽar(θ̃) = [−E[H(θ̃)]]−1

Note that if misspecification occurs (if we have selected the wrong probability density function to begin
with), we are not assured of any of the asymptotic properties.

13.2.1 Finite sample properties of MLEs
MLEs can be biased in finite samples (and typically are). We can evaluate bias much like we have done
in previous parts of the course; by taking E(θ̃). This knowledge can be used to correct for any bias
(as in the case of σ̃2). However, in most cases, there is no closed-form solution for the MLE itself, and
numerical methods must be used to solve for the estimate. When the estimator does not have a closed
form solution, we cannot take E(θ̃), and we will not be able to “see” whether or not the estimator is
biased. In this case, approximations or Monte Carlo experiments may be used to evaluate bias.

13.3 Application of MLE: count data
There are many instances in econometrics where the variable that we want to explain is a count variable,
i.e. y = 0, 1, 2, . . . . Examples of some cases are:

• calls at a call-centre
• number of customers
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• doctor visits
• bank failures
• insurance claims
• patents

LS can be inconsistent when the the dependent variable is a count, and does not provide a “fitted”
model that is useful. Instead of LS, we could use a “count data” model. The most basic of count data
models is the Poisson regression model.

13.3.1 Poisson distribution
When estimating a model by maximum likelihood, we first need to pick a suitable distribution for
describing the y variable. We start with the Poisson distribution, which describes the number of events
that will happen over some fixed interval (usually an interval of time). If the events are assumed to be
independent from one another, and the times between events are exponentially distributed, then we get
a Poisson distribution:

f (yi | λ) = λyi

eλyi!
; yi = 0, 1, 2, . . . ; λ > 0 (13.1)

The mean and variance of this distribution is λ.1 If we had an estimate for the mean λ then we would
know everything about the counting process; e.g. the probability of more than 4 customers showing up
in a day.

13.3.2 Maximum likelihood estimation of the Poisson distribution
Suppose we have a sample of data, y. The MLE will tell us the value of λ that is most likely to have
“generated” the sample that we have observed.
The first step is to determine the joint log likelihood. Assuming independence of the yis, the joint
log-likelihood is:

l (λ | yi) =
n∑

i=1
(yi log λ − λ − log yi!)

or:

l (λ | yi) =
n∑

i=1
yi log λ − nλ −

n∑
i=1

log yi! (13.2)

Now, taking the derivative of 13.2 with respect to λ we get:

∂l

∂λ
=
∑n

i=1 yi

λ
− n (13.3)

Setting 13.3 equal to zero for the FOC, and solving for λ, yields:

λ̃ = ȳ (13.4)

In order to verify that 13.4 is the MLE for λ we take the second derivative of 13.3:

∂2l

∂λ2 = −
∑n

i=1 yi

λ2 (13.5)

Since 13.5 is negative, the log-likelihood is concave and 13.4 solves for the global maximum. Note that
13.5 is the (scalar) Hessian matrix, H.
1This equi-dispersion property proves too restrictive for most applications.
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13.3.3 The variance of λ̃

The variance of an MLE may be found by taking the inverse of the negative of the expected Hessian
matrix (the matrix of second order derivatives and cross derivatives of the log-likelihood). In the present
context:

var(λ̃) = [−E(H)]−1 = λ2∑
E (yi)

= λ2

nλ
= λ

n
(13.6)

Using the invariance property of MLEs, an MLE for the variance of λ̃ is found by substituting λ̃ into
13.6:

ṽar(λ̃) = λ̃

n

Example 13.1 — Flying-bomb hits on London during WWII The following data is on number of bomb
hits in south London during WWII (Feller, 1957). The city was divided into 576 areas, and the number
of areas hit exactly y times was counted. What does the assumption of independence of the data imply
here?

Hits 0 1 2 3 4 5+

Observed 229 211 93 35 7 1
Expected 228 211 98 30 7 1

What is λ̃? What is ṽar(λ̃)? How are the “Expected” values in the table calculated? How would you
test the hypothesis that the expected number of bomb hits for an area is less than 1?

13.3.4 Specification testing for the Poisson distribution
Originally, we had to make the assumption that the data were Poisson distributed. The distributional
assumption is an important first step, and one that can be tested. Similar to R2 in the linear regression
model, we can examine how well the model estimated by MLE “fits” the data. If the fit is good, the
distributional assumption is generally considered to be good.

Goodness-of-fit tests for the Poisson distribution can be achieved by comparing the observed and
expected counts. For example, consider the following χ2 statistic:

χ2 =
k∑

i=1

(Oi − Ei)2

Ei

where Oi are the observed frequencies and Ei are the expected frequencies (obtained by plugging the
MLE into the probability function). If the Poisson model is correctly specified, then the expected value
of the above statistic is 0. If the above chi-square statistic becomes too large, we may reject the null that
Poisson is the correct distribution, however, rejection does not indicate the appropriate distribution,
only that the Poisson model is misspecified (and we lose of some or all of MLs asymptotic properties).

The main limitation of the Poisson distribution in applications is it’s property of equidispersion.
Most count data are overdispersed, i.e. the variance exceeds the mean. Hence, there are several tests
based on this restriction. In many cases, there are other candidate distributions that the data may follow
(e.g. negative binomial or zero-inflated Poisson), that nest the Poisson distribution. Wald, likelihood
ratio, and score testing procedures may be used.

13.4 The Poisson regression model
Once we include explanatory variables, or “regressors” into the model, it becomes a “regression model”.
How do we accomplish this? A common modelling strategy is to “link” the mean of the distribution
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to regressors. We simply write an equation where the parameters of the distribution are determined
by explanatory variables. Usually, one of the parameters of the distribution is the mean, and this is
where we form the link. This allows, for example, different people with different characteristics to have
different means. For Poisson, the link is usually:

E [yi | Xi] = λi = exp
(
X ′

iβ
)

(13.7)

That is, the mean of y is conditional on X and can vary by individual or observation. The specific
form of the link function is somewhat arbitrary, but ensures that λi > 0. For example, consider the
number of doctor visits. An individual’s doctor visits may depend on age, underlying health conditions,
genetics, and insurance status. The economist may be interested in moral hazard or adverse selection.

By substituting 13.7 into 13.1, multiplying across all observations (by independence of the data),
and taking logs, we have the following joint log-likelihood function:

l (β | yi, Xi) =
n∑

i=1
yiX

′
iβ − exp X ′

iβ − log yi! (13.8)

The derivative of 13.8 with respect to the vector β is:

∂l

∂β
=

n∑
i=1

(
yi − exp X ′

iβ
)

Xi (13.9)

Setting 13.9 equal to zero does not admit a closed form solution for β! Hence, numerical methods, such
as Newton-Raphson, must be used to obtaining the ML estimate. Note that asymptotic standard errors
for the β can again be estimated by inverting the expected Hessian matrix.

13.4.1 Interpreting the β

Due to the exponent in the link function, the β do not have as simple of an interpretation as they do
in LS (this is one of the reason people hesitate to depart from LS). For example, a one unit change in
the jth regressor leads to a proportionate change in E[yi | Xi]. Note that while standard errors for the
β can be estimated by inverting the Hessian, estimating standard errors of the semi-elasticities would
require the delta method.

13.5 Application: badhealth
Load some data:

install.packages("COUNT")
library(COUNT)
data(badhealth)

The variables in the data set are numvisits - the number of visits to the doctor, badh - a dummy equal
to 1 if the individual self-reports that they are in “bad health”, and age - the age of the individual.
Plot the data:

barplot(table(badhealth$numvisit[badhealth$numvisit < 17]))

The goal is to figure out how badh effects the number of doctor visits. Try LS:

summary(lm(numvisit ~ badh + age, data=badhealth))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.436780 0.345927 4.153 3.52e -05 ***
badh 4.081386 0.327616 12.458 < 2e -16 ***
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Figure 13.1: Counts of doctor visits

age 0.013720 0.009055 1.515 0.13
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.227 on 1124 degrees of freedom
Multiple R- squared : 0.1323 , Adjusted R- squared : 0.1307
F- statistic : 85.68 on 2 and 1124 DF , p-value: < 2.2e -16

The LS model implies that doctor visits increase by 4 when a person is in “badhealth”. But the model
that we really want to estimate is:

E[yi] = exp (β0 + β1badh + β2age)

where yi is recognized to be a count variable and follows the Poisson distribution (or some other counting
distribution). To estimate this model in R:

pois.mod <- glm(numvisit ~ badh + age, family=poisson, data=badhealth)
summary(pois.mod)

Coefficients :
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 0.447022 0.071428 6.258 3.89e -10 ***
badh 1.108331 0.046169 24.006 < 2e -16 ***
age 0.005822 0.001822 3.195 0.0014 **
---
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

( Dispersion parameter for poisson family taken to be 1)

Null deviance : 4020.3 on 1126 degrees of freedom
Residual deviance : 3465.3 on 1124 degrees of freedom
AIC: 5638.6

To interpret the estimated coefficients, we can take exponents. For example:

exp(0.447022 + 1.108331*1 + 0.005822*30) / exp(0.447022 + 1.108331*0 + 0.005822*30)

[1] 3.029298

tells us that people with “badhealth” are 3.03 times more likely to visit the doctor. (Note that the
above exponent is the same as exp(1.108331)).
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13.6 MLE with a Normal distribution
Consider a random sample of n observations on a variable x, where xi ∼ N(µ, σ2) for all i. This implies
that the density function for a single xi value is the familiar “bell-shaped” curve, the formula for which
is:

f
(
xi | µ, σ2

)
= 1√

2πσ2
exp

{
− 1

2σ2 (xi − µ)2
}

Now consider the joint density function of the n sample values, given the parameters. Using the
independence of these values:

f
(
x1, x2, . . . , xn | µ, σ2

)
= f

(
x1 | µ, σ2

)
× f

(
x2 | µ, σ2

)
× . . . × f

(
xn | µ, σ2

)
=
(
2πσ2

)− n
2 exp

(
− 1

2σ2

∑
i

(xi − µ)2
)

.

Here, the joint density function is viewed as a function of the x data, given the values of the two
parameters, µ and σ2. Without changing the form of this expression, we could also view it from a
different perspective: as a function of the parameters, given the values of the data. When we view it in
this alternative way we give the function a different name, even though the algebraic expression is the
same – we call it the “Likelihood Function”. That is:

L
(
µ, σ2 | x1, x2, . . . xn

)
= f

(
x1, x2, . . . . . . , xn | µ, σ2

)
One general estimation principle that we could adopt is to try and choose the values of the parameters
that are “most likely” to have generated the observed sample of data. Note that all of the (data-
related) information that we have about the parameters is summarized in the joint density function for
the sample observations (i.e., the likelihood function). In other words, we could choose a formula for
the estimator which maximizes the value of the likelihood function (or the value of the logarithm of the
likelihood function, as this will yield the same result, because the logarithmic transformation is strictly
monotonic increasing). The estimator that we obtain by following this logic is called the Maximum
Likelihood Estimator (MLE), and is perhaps the most widely used estimation principle in statistics
(and econometrics).

To get the MLE’s of µ and σ2 in our example, we will have to take the partial derivatives of the
likelihood function, or its logarithm (denoted log L(µ, σ2)) for convenience, with respect to µ and σ2,
and set these derivatives equal to zero to obtain the first-order conditions. We then solve this pair of
simultaneous equations for µ and σ2:

log L
(
µ, σ2

)
= −(n/2) log

(
2πσ2

)
−
(
1/2σ2

) n∑
i=1

(xi − µ)2

so,

∂ log L

∂µ
= 0 − 1

2σ2 × 2(−1)
n∑

i=1
(xi − µ) (13.10)

and

∂ log L

∂σ2 = −
(
n/2σ2

)
+ 1

2σ4

n∑
i=1

(xi − µ)2 (13.11)

(Note: to get 13.11 we differentiated with respect to σ2, not with respect to σ.) Setting 13.10 equal to
zero:

n∑
i=1

(x1 − µ̃) = 0
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or

nµ̃ =
n∑

i=1
xi

we get:

µ̃ = 1
n

n∑
i=−1

xi = x̄

Similarly, setting 13.11 equal to zero:
n∑

i=1
(xi − µ̃)2 /σ̃2 = n

σ̃2 = (1/n)
n∑

i=1
(xi − µ̃)2

In this case, the MLE for the population mean is just the sample mean, and the MLE for the population
variance is biased (it has n in the denominator instead of n − 1).

13.7 Exercises
1. Explain what a limited dependent variable is, and list some examples.
2. What is the likelihood function?
3. Define the maximum likelihood estimator.
4. What are the properties of the maximum likelihood estimator?
5. What is the crucial assumption backing the “good” properties of the maximum likelihood estima-

tor?
6. Why do we typically work with the log-likelihood, instead of just the likelihood?
7. In the context of the Poisson distribution, explain how to create a regression model.
8. The geometric distribution may be used to describe the probability of a number of failures occur-

ring before the first success. The probability function for a random variable, yi, which follows a
geometric distribution, is given by:

Pr (Yi = yi) = (1 − p)yip

where p is the probability of success. The mean of the distribution (the expected value of yi) is
given by:

E (yi) = 1 − p

p

(a) Specify the joint likelihood function.
Answer.
The likelihood function is:

L (p | yi, . . . , yn) =
n∏

i=1
(1 − p)yip = (1 − p)yipn

(b) Take the log of the likelihood function.
Answer.

log L =
∑

yi log(1 − p) + n log p
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(c) Find the MLE for p.
Answer.

∂ log L

∂p
= −

∑
yi

1 − p
+ n

p
= 0

p̃ = 1
1 + ȳ

(d) Find the Hessian, and make sure it is n.s.d.
Answer.
In this case, there is only one parameter, so the Hessian is scalar:

∂2 log L

∂p2 = −
∑

yi

(1 − p)2 − n

p2

Since the Hessian is ≤ 0 for all p ≥ 0, the MLE p̃ solves for the global max.

9. The exponential distribution describes the time between events in a Poisson process. The proba-
bility function for the exponential distribution is:

p (yi | λ) = λe−yiλ

Find the maximum likelihood estimator for λ.
Answer.
The joint likelihood function is:

L (λ | y1, . . . , yn) =
n∏

i=1
p(yi | λ) = λne−λ

∑
yi

and the log-likelihood is:

log L = n log λ − λΣyi

Taking the first derivative of the log-likelihood and setting it equal to zero for the FOC, and
solving, gives:

∂ log L

∂λ
= n

λ
−
∑

yi = 0

λ̃ = n/
∑

yi = 1/ȳ

Taking the second derivative:

∂2 log L

∂λ2 = −n

λ2

We see that it is negative for λ > 0, so the MLE finds the global maximum.
10. Refer to section 13.6. Consider our usual linear regression model:

y = Xβ + ϵ ; ϵ ∼ N
(
0, σ2I

)
(a) Write down the likelihood function, L

(
β, σ2 | y1, y2, . . . , yn

)
. Note that if the ϵi are uncorre-

lated and normally distributed, then they are independent.
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Answer.

L = p (y1, . . . , yn | β, σ)

=
n∏

i=1
p (yi | β, σ) ; given independence

=
n∏

i=1

[ 1
σ

√
2π

· e− 1
2σ2 (yi−x′

iβ)2]
= 1

σn(
√

2π)n
· e− 1

2σσ

∑n

i=1(yi−x′
iβ)2

= σ−n(2π)− n
2 e

(
− 1

2σ2
∑n

i=1[yi−x′
iβ]2
)

(b) Derive the maximum likelihood estimator for β in this model. Is this estimator biased or
unbiased?
Answer.

log L = −n log σ − n

2 log 2π − 1
2σ2

n∑
i=1

(
yi − x′

iβ
)2

= −n log σ − n

2 log 2π − 1
2σ2 (y − Xβ)′(y − Xβ)

∂ log L

∂β
= − 1

2σ2 · ∂

∂β

[
y′y + β′X ′Xβ − 2y′xβ

]
= − 1

2σ2
(
2X ′xβ − 2X ′y

)
= 0

Hence,(
X ′Xβ − x′y

)
= 0 ⇒ β̂ =

(
X ′X

)−1
X ′y

and this is just the LS estimator, which is unbiased under the usual set of assumptions.
(c) Compare the assumptions that we used in class to derive the LS estimator of β with the

assumptions used here to obtain the MLE.
Answer.
With LS, the derivation of b requires: (i) a linear model; (ii) that X has full rank (the
properties of b then depend on additional assumptions). With the MLE, the derivation of the
estimator requires (i) and (ii) above, and an appropriate assumption about the distribution
of the errors - here, Normality was used. The properties of the MLE are the same as those
of b, if the assumptions hold.

(d) Derive the MLE for σ2 in this model. Is this estimator biased or unbiased?
Answer.

∂ log L

∂σ2 = ∂

∂σ2

[
−n

2 log σ2 − n

2 log 2π − 1
2σ2 (y − Xβ) (y − Xβ)

]
= − n

2σ2 + 1
2σ4 (y − Xβ)′ (y − Xβ) = 0

so

σ̃2 = 1
n

(y − Xβ̃)′(y − Xβ̃) = 1
n

e′e

where e is the MLE and LS residual vector. Compare this estimator with s2 = e′e/(n − k),
our usual estimator. We know that s2 is unbiased, so clearly σ̃2 is biased.



13.7 Exercises 131

(e) One of the two estimators you have obtained is biased. Show that this bias vanishes if the
sample size is sufficiently large.
Answer.

E
(
σ̂2
)

= 1
n

E
(
e′e
)

= 1
n

(n − k)σ2 = (1 − k

n
)σ2 ̸= σ2

and

Bias
(
σ̃2
)

= E
(
σ̃2
)

− σ2 = (1 − k

n
)σ2 − σ2 = (−k

n
)σ2

So, the bias is negative. For fixed k, if n → ∞, then this bias vanishes.
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