
1/22

Econometrics I - Asymptotic Properties of
Various Estimators

Ryan T. Godwin

University of Manitoba



2/22

So far our results apply for any finite sample size n. In more general
models we often can’t obtain exact results for estimators’ properties
(for example, models that are estimated via maximum likelihood. In
these cases, we might instead consider the estimator’s properties as
n → ∞, as a way of “approximating” results. Asymptotic properties
of estimators are also of interest in their own right: inferential
procedures should “work well” when we have lots of data. We have
already seen one example of an asymptotic property: hypothesis tests
that are “consistent”.

Weak consistency. An estimator, θ̂, for θ, is said to be (weakly)
consistent if

lim
n→∞

{
Pr .

[∣∣∣θ̂n − θ
∣∣∣ < ϵ

]}
= 1

for all ϵ > 0.
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A sufficient condition for weak consistency to hold is the stronger
mean-square consistency:

Mean-square consistency. An estimator, θ̂, for θ, is said to be
mean-square consistent if its bias and variance go to zero as n goes to
infinity:

Bias
(
θ̂n

)
→ 0; as n → ∞,

V
(
θ̂n

)
→ 0; as n → ∞.

Mean-square consistency is often useful for checking consistency, since
it is easier to prove than weak consistency.
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If θ̂ is weakly consistent for θ, we say that the “probability limit” of θ̂
equals θ. We denote this by using the “plim” operator, and we write:

plim
(
θ̂n

)
= θ or, θ̂n

p→ θ

Loosely speaking, consistency means that, given an infinitely large
sample of data, the estimator provides the true parameter value
exactly (there is zero bias and variance).
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Consistency of the sample average. Let xi ∼
[
µ, σ2

]
be a random

i.i.d. variable.

x̄ =
1

n

n∑
i=1

xi

E[x̄] =
1

n

n∑
i=1

E (xi) =
1

n
(nµ) = µ (unbiased, for all n)

var[x̄] =
1

n2
var

[
n∑

i=1

xi

]
=

1

n2

n∑
i=1

var (xi)

=
1

n2

(
nσ2

)
= σ2/n

So, x̄ is an unbiased estimator of µ, and limn→∞{var[x̄]} = 0. This
implies that x̄ is both a mean-square consistent, and a weakly
consistent estimator of µ.
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Note:

▶ If an estimator is inconsistent, then it is a pretty useless
estimator!

▶ There are many situations in which our LS estimator is
inconsistent! For example, when:
▶ there is an “omitted” variable that is relevant, and that is

correlated to a variable included in the estimated model;
▶ there is simultaneous causality ;
▶ a time series model includes lags of the dependent variable, and

the errors are autocorrelated.
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Slutsky’s Theorem

Let plim
(
θ̂n

)
= c, and let f(.) be any continuous function. Then,

plim
[
f
(
θ̂n

)]
= f(c). For example:

plim

(
1

θ̂

)
=

1

c

where θ̂ and c are scalars;

plim
(
eθ̂
)
= ec

where θ̂ and c are vectors;

plim
(
Θ̂−1

)
= C−1

where Θ̂ and C are matrices. Slutsky’s Theorem is a very useful
result: the “plim” operator can be used very flexibly.
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Asymptotic Properties of LS Estimator

Consider LS estimator of β under our standard assumptions, in the
“large n” asymptotic case.

▶ Can relax some assumptions:

1. Don’t need Normality assumption for the error term of our model.
2. Columns of X can be random, just assume that {x′

i, ϵi} is a
random and independent sequence; i = 1, 2, 3, . . ..

3. The above assumption implies that plim
[
n−1X ′ϵ

]
= 0.

▶ Amend (extend) our assumption about X having full column
rank. Assume instead that plim

[
n−1X ′X

]
= Q, where Q is a

finite, positive-definite and symmetric (k × k) matrix that is
unobservable.

Question: In words, what are we assuming about the elements of X,
as n increases without limit?
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Theorem: The LS estimator of β is weakly consistent.

Proof:
b = (X ′X)

−1
X ′y = (X ′X)

−1
X ′(Xβ + ϵ)

= β + (X ′X)X ′ϵ

= β +

[
1

n
(X ′X)

]−1 [
1

n
X ′ϵ

]
.

If we now apply Slutsky’s Theorem repeatedly, we have:

plim(b) = β +Q−10 = β

We can also show that s2 is a consistent estimator for σ2. There are
at least two ways to do this (each uses different assumptions). First,
assume the errors are Normally distributed, and get a strong result.
We can also relax this assumption and get a weaker result.
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Theorem:

If the regression model errors are Normally distributed, then s2 is a
mean-square consistent estimator for σ2.
Proof: If the errors are Normal, then we know that

(n− k)s2

σ2
∼ χ2

(n−k)

The mean and variance of a χ2 distributed random variable are:

E
[
χ2
(n−k)

]
= (n− k)

var
[
χ2
(n−k)

]
= 2(n− k)
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So,

E
(
s2
)
=

σ2E
[
χ2
(n−k)

]
n− k

= σ2 ; unbiased

and

var

[
(n− k)s2

σ2

]
= 2(n− k)[

(n− k)2

σ4

]
var

(
s2
)
= 2(n− k)

var
(
s2
)
= 2σ4/(n− k)

So, var
(
s2
)
→ 0, as n → ∞, and the estimator is unbiased. This

implies that s2 is a mean-square consistent estimator for σ2. (This
implies that it is also a weakly consistent estimator.)
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▶ With the addition of the (relatively) strong assumption of
Normally distributed errors, we get the (relatively) strong result.

▶ Note that σ̂2 = (e′e) /n is also a consistent estimator, even
though it is biased.

What can we say if we relax the assumption of Normality? We need a
preliminary result to help us (Khintchine’s theorem; or the Weak Law
of Large Numbers).
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Khinchin’s Theorem; Weak Law of Large Numbers
(WLLN)

Suppose that {xi}ni=1 is a sequence of random variables that are
uncorrelated, and all drawn from the same distribution with a finite
mean, µ, and a finite variance, σ2. Then, plim(x̄) = µ. Khinchin’s
theorem says that a sample average of i.i.d. variables is at least weakly
consistent. We can use this result to establish the consistency of s2.
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Weak consistency of s2. In our regression model, s2 is a weakly
consistent estimator for σ2. (Notice that this also means that σ̂2 is a
weakly consistent estimator, so start with the latter estimator.)
Proof :

σ̂2 =

(
e′e

n

)
=

1

n

n∑
i=1

e2i

=
1

n
(Mϵ)′(Mϵ) =

1

n
ϵ′Mϵ

=
1

n

[
ϵ′ϵ− ϵ′X (X ′X)

−1
X ′ϵ

]
=

[(
1

n
ϵ′ϵ

)
−
(
1

n
ϵ′X

)(
1

n
X ′X

)−1 (
1

n
X ′ϵ

)]
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So, plim
(
σ̂2

)
= plim

(
1
nϵ

′ϵ
)
− 0′Q−10 = plim

[
1
n

∑n
i=1 ϵ

2
i

]
(if the

errors are not autocorrelated, neither are the squared values). Also,
E
[
ϵ2i
]
= var . (ϵi) = σ2. By Khintchine’s Theorem, we immediately

have the result:
plim

(
σ̂2

)
= σ2

and
plim

(
s2
)
= σ2

Relaxing the assumption of Normally distributed errors led to a
weaker result for the consistent estimation of the error variance.
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Asymptotic efficiency

Suppose we want to compare the (large n) asymptotic behaviour of
our LS estimators with those of other potential estimators. These
other estimators will presumably also be consistent. This means that
in each case the sampling distributions of the estimators collapse to a
“spike”, located exactly at the true parameter values. So, how can we
compare such estimators when n is very large: aren’t they
indistinguishable? If the limiting density of any consistent estimator
is a degenerate “spike”, it will have zero variance, in the limit. Can
we still compare large-sample variances of consistent estimators? In
other words, is it meaningful to think about the concept of
asymptotic efficiency?

The key to asymptotic efficiency is to “control” for the fact that the
distribution of any consistent estimator is “collapsing”, as n → ∞.

The rate at which the distribution collapses is crucially important.
This is probably best understood by considering an example.
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Example

Let {xi}ni=1 be a random sample from a population with mean and
variance

[
µ, σ2

]
. We know from a previous example that:

E[x̄] = µ; var[x̄] = σ2/n

Observe how var[x̄] → 0 as n → ∞ (the sampling distribution
collapses to a “spike” at the true parameter value). Now, construct:
y =

√
n(x̄− µ). Note that:

E(y) =
√
n(E(x̄)− µ) = 0

and
var[y] = (

√
n)2 var(x̄− µ) = n var(x̄) = σ2
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The scaling we’ve used results in a finite, non-zero, variance.
E(y) = 0, and var[y] = σ2; unchanged as n → ∞. So, y =

√
n(x̄− µ)

has a well-defined “limiting” (asymptotic) distribution. The
asymptotic mean of y is zero, and the asymptotic variance of y is σ2.
Why did we scale by

√
n, and not (say), by n itself?

In fact, because we had independent xi’s (random sampling), we have

the additional result that y =
√
n(x̄− µ)

d→ N
[
0, σ2

]
, the

Lindeberg-Lévy Central Limit Theorem.
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Definition

Let θ̂ and θ̃ be two consistent estimator of θ; and suppose that

√
n(θ̂ − θ)

d→
[
0, σ2

]
, and

√
n(θ̃ − θ)

d→
[
0, φ2

]
.

Then θ̂ is “asymptotically efficient” relative to θ̃ if σ2 < φ2. In the
case where θ is a vector, θ̂ is “asymptotically efficient” relative to θ̃ if
∆ = asy .V (θ̃)− asy .V (θ̂) is positive definite.
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Asymptotic Distribution of the LS Estimator

Let’s consider the full asymptotic distribution of the LS estimator, b,
for β in our linear regression model. We’ll actually have to consider
the behaviour of

√
n(b− β):

√
n(b− β) =

√
n
[
(X ′X)

−1
X ′ϵ

]
=

[
1

n
(X ′X)

]−1 (
1√
n
X ′ϵ

)
It can be shown, by the Lindeberg-Feller Central Limit Theorem, that(

1√
n
X ′ϵ

)
d→ N

[
0, σ2Q

]
where Q = plim

[
1
n (X ′X)

]
. So, the asymptotic covariance matrix of√

n(b− β) is

plim

[
1

n
(X ′X)

]−1 (
σ2Q

)
plim

[
1

n
(X ′X)

]−1

= σ2Q−1.
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In full, the asymptotic distribution of b is correctly stated by saying
that: √

n(b− β)
d→ N

[
0, σ2Q−1

]
The asymptotic covariance matrix is unobservable, for two reasons:

1. σ2 is typically unknown.

2. Q is unobservable.

▶ We can estimate σ2 consistently, using s2.

▶ To estimate σ2Q−1 consistently, we can use ns2 (X ′X)
−1

:
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plim
[
ns2 (X ′X)

−1
]
= plim

(
s2
)
plim

[
1

n
(X ′X)

]−1

= σ2Q−1

The square roots of the diagonal elements of ns2 (X ′X)
−1

are the
asymptotic standard errors for the elements of

√
n(b− β). Loosely

speaking, the asymptotic covariance matrix for b itself is s2 (X ′X)
−1

;
and the square roots of the diagonal elements of this matrix are the
asymptotic standard errors for the bi’s themselves.


