Econ 7010 Final Exam

Ryan T. Godwin

- Time allowed: 2 hours (7:30 pm 9:30 pm).
- Upload your answers to UM Learn between 9:30 pm and 9:40 pm. 9:40 pm is the final deadline.
- 4 questions total. Answer all questions.
- The number of marks allocated to each question is in [red].
- 120 marks, 120 minutes.
- Do not collaborate with anyone on this exam.

1. [40 marks total] Suppose that the true population model is:

$$\boldsymbol{y} = X_1 \boldsymbol{\beta}_1 + X_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$$

- (a) [8] Let all of the usual assumptions hold. Suppose that the model that you actually specify and estimate by LS is $y = X_1\beta_1 + u$ (because X_2 is unobservable, for example). Show that, in general, b_1 is biased.
- (b) [8] The usual assumptions imply that:

$$\operatorname{plim}\left(\frac{X_1'X_1}{n}\right) = Q_{X_1}$$

and

$$\operatorname{plim}\left(\frac{X_1'\epsilon}{n}\right) = \mathbf{0}$$

However, in this case X_2 is unobservable and related to X_1 , so that $plim\left(\frac{X'_1\epsilon}{n}\right) \neq \mathbf{0}$.

In this case, show that b_1 is inconsistent, in general.

- (c) [2] Under what special circumstance would the LS estimator still be unbiased and consistent?
- (d) [4] A solution to the problem presented above is to use Instrumental Variables (IV) estimation instead of LS. The simple IV estimator for the problem above is $\boldsymbol{b}_{IV} = (Z'X_1)^{-1}Z'\boldsymbol{y}$. Briefly explain how the instrument is used to "fix" the problem.
- (e) [6] Prove that the simple IV estimator is consistent.
- (f) [8] Derive the formula for the simple IV estimator using the two-stage-least-squares (2SLS) interpretation of IV: (1) Regress X_1 on Z, get the LS fitted values. (2) Estimate the model $\boldsymbol{y} = X_1 \boldsymbol{\beta}_1 + \boldsymbol{u}$ by OLS.
- (g) [4] Suppose that we want to compare the asymptotic variance of **b** with \mathbf{b}_{IV} . Explain why we need to consider the asymptotic distributions of $\sqrt{n}(\mathbf{b} \boldsymbol{\beta})$ and $\sqrt{n}(\mathbf{b}_{IV} \boldsymbol{\beta})$, instead of the distributions of just **b** and \mathbf{b}_{IV} .

2. [30 marks total] Use some of the following 6 estimated models:

	Dependent variable:						
	log(wage)						
	(1)	(2)	(3)	(4)	(5)	(6)	
education	0.047^{***} (0.006)	0.056^{***} (0.005)	0.046^{***} (0.006)	0.058^{***} (0.005)	0.047^{***} (0.006)	$\begin{array}{c} 0.044^{***} \\ (0.007) \end{array}$	
experience	$\begin{array}{c} 0.014^{***} \\ (0.003) \end{array}$	0.016^{***} (0.003)	$\begin{array}{c} 0.014^{***} \\ (0.003) \end{array}$	0.015^{***} (0.003)	0.015^{***} (0.003)	$\begin{array}{c} 0.014^{***} \\ (0.003) \end{array}$	
age	0.019^{***} (0.003)	0.019^{***} (0.003)	0.020^{***} (0.003)	0.020^{***} (0.003)	0.019^{***} (0.003)	0.019^{***} (0.003)	
female	-0.259^{**} (0.125)	$\begin{array}{c} 0.082^{***} \\ (0.030) \end{array}$	-0.275^{**} (0.121)		-0.189 (0.120)	-0.284^{**} (0.125)	
Manitoba	-0.099^{***} (0.032)	-0.102^{***} (0.032)	-0.064^{***} (0.022)	-0.066^{***} (0.022)	-0.103^{***} (0.031)		
Saskatchewan	$\begin{array}{c} 0.129^{***} \\ (0.030) \end{array}$	$\begin{array}{c} 0.131^{***} \\ (0.030) \end{array}$	0.103^{***} (0.021)	$\begin{array}{c} 0.101^{***} \\ (0.022) \end{array}$	$\begin{array}{c} 0.127^{***} \\ (0.030) \end{array}$		
female \times education	0.019^{**} (0.008)		0.020^{***} (0.008)		0.018^{**} (0.008)	0.021^{**} (0.008)	
female \times experience	0.002^{*} (0.001)		0.003^{**} (0.001)			0.003^{**} (0.001)	
female \times Manitoba	$0.066 \\ (0.044)$	$0.065 \\ (0.044)$			$0.068 \\ (0.044)$		
female \times Saskatchewan	-0.052 (0.043)	-0.061 (0.043)			-0.053 (0.043)		
Constant	$1.716^{***} \\ (0.087)$	$\begin{array}{c} 1.555^{***} \\ (0.065) \end{array}$	$1.724^{***} \\ (0.086)$	$\frac{1.564^{***}}{(0.065)}$	$\frac{1.685^{***}}{(0.086)}$	$1.775^{***} \\ (0.087)$	
	$1,000 \\ 0.765 \\ 0.762$	$1,000 \\ 0.762 \\ 0.760$	$1,000 \\ 0.763 \\ 0.761$	$1,000 \\ 0.756 \\ 0.754$	$1,000 \\ 0.764 \\ 0.762$	$1,000 \\ 0.749 \\ 0.747$	

Table 1: Estimation results for question 2

Note:

*p<0.1; **p<0.05; ***p<0.01

The sample size is 1000. The variables in the data are:

- wage yearly wage of the worker, measured in thousands of dollars
- experience years of work experience
- age the age of the worker in years
- female a dummy variable equal to 1 if the individual is female, 0 otherwise
- Manitoba a dummy variable equal to 1 if the worker lives in Manitoba, 0 otherwise
- Saskatchewan a dummy variable equal to 1 if the worker lives in Saskatchewan, 0 otherwise

Table 2:	Critical values for the <i>F</i> -test statistic.				
	\overline{q}	5% critical value			
	1	3.84			
	2	3.00			
	3	2.60			
	4	2.37			
	5	2.21			

Use a 5% significance level for all questions.

- (a) [10] Do the wages of workers depend on province (location)? Use a hypothesis test.
- (b) [6] Is there a different effect of education on wages for men vs. women? Use a hypothesis test.
- (c) [8] What are the risks and benefits of using any of the models (2) (6), instead of model (1)? Use the RLS estimator in your explanation.
- (d) [4] Suppose that the error term is **not** Normally distributed. How would you go about testing the hypotheses in parts (a) and (b)?
- (e) [2] Why should we use the F-test instead of the Wald test, if we can?

3. [20 marks total]

- (a) [6] Show how a regression model that includes a polynomial in the variable x allows for a non-linear effect between x and y.
- (b) [4] Suppose that you are going to estimate a non-linear model by NLS. Explain why you will likely need a numerical algorithm to find the estimates.
- (c) [4] Briefly describe what is meant by "tolerance" and "iterations" in the context of a numerical algorithm (such as the Newton-Raphson algorithm).
- (d) [6] Briefly describe how the parameter estimates are calculated in each successive iteration of the Newton-Raphson algorithm.
- 4. [30 marks total] Consider the following population model where the variables are averaged over groups:

$$\log(income_i) = \beta_1 education_i + \beta_2 \bar{x}_i + \epsilon_i$$

 $income_i$ is the average income of workers in location *i*, $education_i$ is the average education in location *i*, and \bar{x}_i is a vector of regressors containing economic and demographic "controls", all of which are also averaged by location. There are only two different locations: North and South. For each observation, there is also a dummy variable *d* which tells you whether the location is North or South:

$$d = 1$$
 if location is in the North
 $d = 0$ if location is in the South

In the North, all variables have been averaged over group sizes of 400. In the South, all variables have been averaged over a group size of 100.

- (a) [4] For this model and data, which of the standard assumptions have been violated?
- (b) [10] What are the consequences of the assumption(s) in (a) being violated, in terms of estimation and hypothesis testing?
- (c) [16] Provide solutions to the problem(s) identified in part (b). Explain carefully how you might use the dummy variable, and/or information about the differences in group size.