Econ 7010 - Midterm 1

Ryan T. Godwin

The exam is 75 minutes long, with 100 marks total.

Multiple Choice - 2 marks each

- 1. The Least Squares principle for estimating a regression model, $y = X\beta + \epsilon$, where all of the usual assumptions are satisfied:
 - (a) Produces unbiased and efficient estimators of β .
 - (b) Involves minimizing the sum of the squares of the LS residuals.
 - (c) Produces an estimator for β that has a Normal distribution, centered at β itself.
 - (d) Produces an equal number of positive and negative residuals if the sample size is even.

2. An estimator is:

- (a) a constant parameter from the population.
- (b) random, because the sample is random.
- (c) unbiased and efficient.
- (d) a sampling distribution.
- 3. Let the X matrix consist of only a column of 1s. Then, M^0y :
 - (a) is a vector of 0s.
 - (b) is $y \overline{y}$.
 - (c) are the OLS predicted values.
 - (d) is undefined.

4. Suppose that we have all of our standard assumptions, and the model includes an intercept. Then

- (a) the OLS residuals sum to zero.
- (b) the fitted regression passes through the sample mean.
- (c) the sample mean of the fitted y values equals the sample mean of the actual y values.
- (d) all of the above.
- 5. Which of the following will transform a vector, y, into its sum-of-squares?
 - (a) yy'
 - (b) y'y
 - (c) y'My
 - (d) yMy'

Short Answer - 8 marks each

6. Given the population model:

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

derive the OLS estimator for β . Which assumptions do you need? [Hint: $\frac{\partial (a'x)}{\partial x} = a$ and $\frac{\partial (x'Ax)}{\partial x} = 2Ax$.]

- 7. Prove that the LS residuals sum to zero, if the model includes an intercept.
- 8. What is the Gauss-Markov theorem?
- 9. Suppose that we have the population model:

$$y = X\beta + \epsilon$$
,

but where the X matrix contains only a column of 1s. In this case, prove that $b = \bar{y}$.

- 10. Using the idea of a constrained minimization problem, explain that R^2 must increase (or stay the same) when a variable is added to the model. Under what circumstance will R^2 stay the same?
- 11. Let all of the usual assumptions hold. Suppose that the model that you actually specify and estimate by OLS is $y = X_1\beta_1 + u$. Show that, in general, b_1 is biased.
- 12. Refer to the previous question. Under what circumstance is b_1 unbiased?

Long Answer - 26 marks

13. Under our various assumptions A.1 to A.6, the sampling distribution of the LS estimator \boldsymbol{b} is:

$$\boldsymbol{b} \sim N\left[\boldsymbol{\beta}, \sigma^2 I_n\right]$$

Prove this result, carefully stating each assumption that you use.