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Statistics Review 

• A statistic is a function of a sample of data 

• An estimator is a statistic 

• Population parameter → unknown 

• Estimator → used to estimate an unknown population parameter 

• The sample, y, will be considered random 

• Since y is random, estimators using y will be random 

 

Since estimators are random, they have a _____________, given a 

special name: sampling distribution. 

 

We will obtain properties of the sampling distribution to see if the 

estimator is “good” or not. 
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3.1 Random Sampling from the Population 

• Typically, we want to know something about a population 

• The population is considered to be very large (infinite), and 

contains some unknown “truth” 

• We likely won’t observe the whole population, but a sample from 

the pop. 

• We’ll use the sample, y, to estimate that something 
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Example: suppose we want to know the mean height of a 

male U of M student 

Let y = height of a male student 

• Population: all male students 

• Population parameter of interest: 𝜇𝑌 

We can’t afford to observe the whole pop. 

We’ll have to collect a sample, y. 

 

[Picture] 
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We want the sample to reflect the population. 

Question: How should the sample be selected from the population? 

 

In particular we want the sample to be i.i.d. 

• Identically 

• Independently 

• Distributed 
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So, the sample y is random!! 

• Could have gotten a different y 

• Parallel universe 
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How could i.i.d. be violated in the heights example? 

Example: mean income of Canadians. How could i.i.d. be violated? 

 

How should we estimate the mean height? 

 

3.2 Estimators and Sampling Distributions 

An estimator uses the sample y to “guess” something about the pop. 
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3.2.1 Sample mean 

A popular choice for estimating a population mean is by using a 

sample mean (or sample average or just average) 

 

 

• From heights example: �̅� = 174.1, 𝜇𝑦 = 176.8 

• There are many ways to estimate 𝜇𝑦. Examples? 

• Why is (3.1) so popular? 

• How good is �̅� at estimating 𝜇𝑦 in general? 

• To answer these questions: idea of a sampling distribution 
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• Randomly sample from the population → get y 

o y is random 

• Use y to calculate �̅� 

o �̅� is random 

o could have gotten a different sample → could have gotten a 

different �̅� 

o population is always the same (𝜇𝑦) 
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3.2.2 Sampling distribution of the sample mean 

• �̅� is random variable (it’s an estimator, all estimators are random) 

• random variables usually have probability functions 

• �̅� has a sampling distribution (probability function for an 

estimator) 

• sampling distribution – imagine all possible values for �̅� that you 

could get – plot a histogram 

• Using a computer, I drew 1 mil. different random samples of n=20 

from table 3.1. Calculate �̅� each time. Plot histogram: 
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Which probability function is right for �̅�? Why? 

• Look at figure 3.1 

• Notice the summation operator in equation 3.1 

• Answer: _____________  Reason: _____________ 

 

�̅� is random. We’ll derive its: 

• mean 

• variance 

Use these to determine if it’s a “good” estimator via three statistical 

properties: 

• Bias 

• Efficiency 

• Consistency 
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3.2.3 Bias 

An estimator is unbiased if its expected value is equal to the 

population parameter it’s estimating. 

 

That is, �̅� is unbiased if 𝐸[�̅�] = 𝜇𝑦 

 

Unbiased if it gives “the right answer on average”. 

 

Biased if it gives the wrong answer on average. 
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3.2.4 Efficiency 

An estimator is efficient if it has the smallest variance among all other 

potential estimators (for us, potential = linear, unbiased) 

 

Need to get the variance of �̅�. 
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• Gauss-Markov theorem proves this is minimum variance 

• We’ll also need this to prove consistency, and for hyp. testing 
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3.2.5 Consistency 

Suppose we had a lot of information. (n → ∞) 

What value should we get for our estimator? 

How would state this mathematically? 

 

Q) Prove that the sample mean is a consistent estimator for the 

population mean. 

 

Q) Define the terms unbiasedness, efficiency, and consistency. 
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3.3 Hypothesis tests (known 𝜎𝑦
2) 

 

• Estimate 𝜇𝑦 (using �̅� for example) 

• See if �̅� appears “close” to 𝜇𝑦,0 

o Remember, �̅� is random! (and Normal) 

• If it’s close → fail to reject 

• If it’s far → reject 
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Example: 

• Hypothesize that mean height of a U of M student is 173cm 

 

• Collect a sample: y = {173.9, 171.7, …, 172.0} 

• Calculate �̅� = 174.1 

• Suppose (very unrealistically that we know that) 𝜎𝑦
2= 39.7 

• What now? 
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The p-value for the above test is 0.44. How to interpret this? 

 

3.3.1 Significance of a test 

 

3.3.2 Type I error 

 

3.3.3 Type II error (and power) 
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3.3.4 Test statistics 

• Just a more convenient way of getting the p-value for the test 

• Each hypothesis test would present us with a new normal curve 

that we would have to draw, and calculate a new area (see fig. 3.2) 

• Instead: standardize 

• This gives us one curve for all testing problems (the standard 

normal curve) 

• Calculate a bunch of areas under the curve, and tabulate them 

• Not an issue with modern computers, but this is still the way we do 

things 

• How to get a z test statistic? 

• Do a z test for our heights example. 
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3.3.5 Critical values 

3.3.6 Confidence intervals 
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3.4 Hypothesis Tests (unknown 𝜎𝑦
2) 

• Much more realistically, 𝜎𝑦
2 (variance of y) will be unknown. 

• Recall that: 𝑉𝑎𝑟[𝑦] =
𝜎𝑦
2

𝑛⁄  

• 𝑧 =
�̅�−𝜇𝑦,0

𝑠.𝑒.(�̅�)
=

�̅�−𝜇𝑦,0

√𝜎𝑦
2

𝑛⁄

 

• So, we need to estimate 𝜎𝑦
2 in order to perform hypothesis tests. 
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3.4.1 Estimating 𝜎𝑦
2 

• A “natural” estimator: 

 

• Is this a good estimator? Why or why not? 

• A better estimator: 

 

• Degrees-of-freedom correction 
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So: 

 

 

Note: for large n, the t test is equivalent to the z test 


