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Types of interaction terms

▶ Interaction terms allow for a type of non-linear effect between
variables.

▶ They are useful when the effect of X on Y may depend on a
different X or D variable.

▶ The interaction term (D ×X) allows for a different linear effect
between the two groups (the groups defined by D).

▶ Both of the variables in the interaction term can be dummy
variables (D1 ×D2), or both of the variables in the interaction
can be continuous (X1 ×X2), but the latter situation is
somewhat rare and we do not discuss it here.
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Simple example

Figure: Same data is plotted in both panels. In the right panel, we use a
dummy variable D to colour code the data points, revealing that there are
separate regression lines for each group.
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Simple example

To illustrate the usefulness of interaction terms, we use a fake data
set. The variables are:

▶ Y - the dependent variable

▶ X - an explanatory variable

▶ D - a dummy variable

The data is plotted above. Let’s begin by estimating a simple model:

Y = β0 + β1X + β2D + ϵ (1)



5/18

Simple example

In R we can use:

1 summary(lm(Y ~ X + D), data=mydata)

1 Coefficients:

2 Estimate Std. Error t value Pr(>|t|)

3 (Intercept) -9.67535 2.00733 -4.820 2.86e-06 ***

4 X 1.99131 0.09807 20.304 < 2e-16 ***

5 D -4.59618 0.72893 -6.305 1.85e-09 ***

Results:

▶ b0 = -9.68. This is the intercept for the D = 0 group.

▶ b1 = 1.99. An increase in X of 1 leads to an average increase in
Y of 1.99. This is the marginal effect of X on Y .

▶ b2 = -4.60. The D = 1 group Y values are 4.60 less than the
D = 0 group, on average. The intercept shifts down by this
amount for the D = 1 group, so that their intercept is b0 + b2 =
-9.68 - 4.60 = -14.28.
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Simple example

Figure: Left panel model (equation 1) uses a dummy variable, which allows
for a different intercept for the two groups. Right panel model (equation 2)
uses a dummy variable and an interaction term, which allows for a different
intercept and different slope.
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Simple example

The estimated model is shown in Figure 2 (left panel). The D = 1
group’s regression line is 4.60 lower. We have two different regression
lines for the two different groups, but they both have the same slope.
We want them to have different slopes!
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Dummy-continuous interaction

Ideally, we would like a separate regression line for the two groups,
since the effect of X on Y may differ for the two. We need something
new: an interaction term. This will allow for two separate marginal
effects (slopes) for the two groups.

Dummy-continuous interaction term:

When X is a continuous variable and D is a dummy variable, D ×X
is a new variable called an interaction term. It allows for the effect of
X on Y to differ between the two groups defined by the dummy.
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Dummy-continuous interaction

Putting the interaction term into the model gives us:

Y = β0 + β1X + β2D + β3(D ×X) + ϵ (2)

where D ×X is the interaction term, and is a new variable that is
created by multiplying the other two variables together. To see how
model 2 allows for two separate lines, consider what the population
model is for D = 0, and separately for D = 1.
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Population model for D = 0

Let’s substitute in the value D = 0 into equation 2 and get the
population model for the first group:

Y = β0 + β1X + β2(0) + β3(0×X) + ϵ

= β0 + β1X + ϵ
(3)

From equation 3, we can see that the intercept is β0 and the slope is
β1.
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Population model for D = 1

Substituting in the value D = 1 into equation 2, we get the
population model for the other group:

Y = β0 + β1X + β2(1) + β3(1×X) + ϵ

= (β0 + β2) + (β1 + β3)X + ϵ
(4)

For the D = 1 group, the intercept is β0 + β2 and the slope is β1 + β3.
The marginal effect of X on Y differs by β3 between the two groups.
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R code for an interaction term

We can include the interaction term by adding the term I(D * X) to
the lm() function:

1 summary(lm(Y ~ X + D + I(D*X)), data=mydata)

1 Coefficients:

2 Estimate Std. Error t value Pr(>|t|)

3 (Intercept) 10.25251 1.73101 5.923 1.4e-08 ***

4 X 0.98663 0.08581 11.497 < 2e-16 ***

5 D -47.61500 2.56503 -18.563 < 2e-16 ***

6 I(D * X) 2.13132 0.12499 17.052 < 2e-16 ***

The estimated value of b3 = 2.13 means that the effect of X on Y (the
slope) is 2.13 higher for the D = 1 group. That is, the effect of X on
Y is 0.99 for D = 0, and (0.99 + 2.13 = 3.12) for D = 1. The two
different regression lines, with the two different slopes, are shown in
the right panel of Figure 2.
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Simple example

Figure: Left panel model (equation 1) uses a dummy variable, which allows
for a different intercept for the two groups. Right panel model (equation 2)
uses a dummy variable and an interaction term, which allows for a different
intercept and different slope.
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Example: land ruggedness and GDP

This example comes from “Ruggedness: The Blessing of Bad
Geography in Africa”, by Nunn and Puga (2012). The data is
available from the authors here. The main variables in the study, for
each of 170 countries, are:

▶ log(GDPpercap) - log real GDP per capita from 2000. This is
the dependent variable, or y variable.

▶ rugged - a Terrain Ruggedness Index that measures the amount
of variation in the elevation of a country. It is a continuous
variable. The higher the ruggedness, the more difficult the
terrain is to traverse. This is the x variable.

▶ Africa - a dummy variable equal to 1 if the country is in Africa.
This is the D variable.

https://diegopuga.org/data/rugged/
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Example: land ruggedness and GDP

▶ Rugged terrain hinders trade and productive activities, so the
higher the ruggedness of a country, the lower the GDP (a
negative relationship between x and y).

▶ However, the authors argue that the relationship is opposite
(positive) for African countries.

▶ The rationale is that rugged terrain offered protection from the
slave trades.

▶ The slave trades hindered future economic development.

▶ For African countries, the higher the ruggedness, the higher the
GDP.
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Example: land ruggedness and GDP

The population model is:

log(GDPpercap) = β0+β1rugged+β2Africa+β3(Africa×rugged)+ϵ

Download the data1 and use lm() with an interaction term
I(cont africa * rugged):

1 rug <- read.csv("https :// rtgodwin.com/data/rugged.csv")

2 mod <- lm(log(rgdppc_2000) ~ rugged + cont_africa + I(

cont_africa * rugged), data=rug)

3 summary(mod)

1As per Nunn and Puga (2012), the missing values for GDP were removed.
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1 Coefficients:

2 Estimate Std.Error t value Pr(>|t|)

3 (Intercept) 9.22323 0.1396 66.044 < 2e-16 ***

4 rugged -0.20286 0.0773 -2.621 0.00958 **

5 cont_africa -1.94805 0.2272 -8.572 6.79e-15 ***

6 I(cont_africa*rugged) 0.39339 0.1316 2.989 0.00323 **

7 ---

8 Signif.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

9

10 Residual standard error: 0.9438 on 166 degrees of freedom

11 Multiple R-squared: 0.3569 , Adjusted R-squared: 0.3453

12 F-statistic: 30.71 on 3 and 166 DF , p-value: 7.595e-16

All variables are significant. The estimate -0.20286 means that for
every increase in a country’s ruggedness of 1, GDP is 20.286% lower
on average. But, African countries are significantly different. The
variable cont africa * rugged allows for the effect of ruggedness to
be different between the two groups, and it is significant with a
p-value of 0.00323. For African countries, an increase of ruggedness of
1 leads to an increase in GDP of −20.286% + 39.339% = 19.053%.
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Figure: Data is from Nunn and Puga (2012). Log real GDP per capita
(from 2000) for 170 countries, and a measure of the ruggedness of the
terrain in each country. A model with a dummy variable for African
countries, and an interaction term with the dummy and ruggedness, is
estimated. The interaction term allows for a different effect of difficult
terrain on GDP, depending on whether the country is African or not.


