Econ 3040 Midterm Exam Formula Sheet

$\mu_Y = \sum p_i Y_i$
$\sigma_Y^2 = \sum p_i \left(Y_i - \mu_y \right)^2$
$\sigma_Y = \sqrt{\sigma_Y^2}$
$\sigma_{XY} = E\left[(X - \mu_X) (Y - \mu_Y) \right]$
$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$
$E(\bar{Y}) = \mu_Y$
$\operatorname{var}[\bar{Y}] = \frac{\sigma_Y^2}{n}$
$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$
$s_{\epsilon}^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2$
$t = \frac{\text{estimate - hypothesis}}{\text{std. error}}$
estimate $\pm 1.96 \times \text{std.}$ error
$b_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$
$b_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$ $b_0 = \bar{Y} - b_1 \bar{X}$
$b_0 = \bar{Y} - b_1 \bar{X}$
$b_0 = \bar{Y} - b_1 \bar{X}$ $\operatorname{var}[b_1] = \frac{\sigma_{\epsilon}^2}{\sum X_i^2 - \frac{(\sum X_i)^2}{n}}$
$b_0 = \bar{Y} - b_1 \bar{X}$ $\text{var}[b_1] = \frac{\sigma_{\epsilon}^2}{\sum X_i^2 - \frac{(\sum X_i)^2}{n}}$ $\hat{Y}_i = b_0 + b_1 X_i$
$b_0 = \bar{Y} - b_1 \bar{X}$ $\text{var}[b_1] = \frac{\sigma_{\epsilon}^2}{\sum X_i^2 - \frac{(\sum X_i)^2}{n}}$ $\hat{Y}_i = b_0 + b_1 X_i$ $e_i = Y_i - \hat{Y}_i$
$b_0 = \bar{Y} - b_1 \bar{X}$ $\text{var} [b_1] = \frac{\sigma_{\epsilon}^2}{\sum X_i^2 - \frac{(\sum X_i)^2}{n}}$ $\hat{Y}_i = b_0 + b_1 X_i$ $e_i = Y_i - \hat{Y}_i$ $R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$