
Econ 3040 A01 - Midterm - Winter 2023

Ryan T. Godwin

The exam is 70 minutes long, and consists of 72 marks (approximately 1 mark per minute). There are
10 short answer questions, each worth 4 marks. There are two long answer questions with 8 parts total,
each part worth 4 marks. Write all answers in the provided exam booklet. You may only have a calculator
and writing implements at your table. You may not use any books, notes, formula sheets, computers, or
phones. A table of areas under the standard Normal curve is provided at the back of the exam, as well as
a formula sheet.

DO NOT OPEN THIS EXAM BOOKLET UNTIL INSTRUCTED TO DO SO.

DON’T TOUCH! (Until instructed to do so).
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Short Answer

1. What is meant by “the realization of a random variable”? How does this idea relate to a sample of
data?

The “realization of a random variable” is the value that the random variable takes, after the ran-
domness has resolved. For example, before dice are rolled, the result is random. After the roll, we
observe the outcome as the realization of the random variable - it is now just a number.

The sample data are realizations of random variables. While the data appear to be just numbers in a
spreadsheet, it is important to remember that the values could have been different - they came from
a random process.

2. What does it mean for an estimator to be unbiased?

An estimator is unbiased if it gives the right answer on average. That is, if the expected value of the
estimator is equal to the thing it’s trying to estimate, the estimator is unbiased. If θ̂ is an unbiased
estimator for θ, then we can write:

E[θ̂] = θ

3. Suppose that there is a random variable Y , with E[Y ] = 2 and var[Y ] = 3. What are the mean and
variance of Z, where Z = 2Y + 1?

E[Z] = E[2Y + 1] = 2E[Y ] + 1 = 2× 2 + 1 = 5

var[Z] = var[2Y + 1] = 4 var[Y ] + 0 = 4× 3 = 12

4. How does the central limit theorem relate to Ȳ and b1?

The CLT says that the sum of random variables tends to be Normally distributed. Since the sample
average and the LS estimator both involved summing the sample data, the CLT implies that they
are Normally distributed.

5. Why are the least squares residuals sometimes called “prediction errors”?

The LS residuals are the differences between the actual Y data and the LS predicted values Ŷ . That
is:

e = Y − Ŷ = actual− predicted

Hence, the residuals can be thought of as prediction errors.
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6. Prove that if all data points line up (fall on the least squares estimated line), then R2 = 1.

If all of the data points line up, then the LS estimated line passes through each data point exactly,
and all the predictions are perfect. That is, all Ŷi = Yi, and all ei = 0. From the formula for R2:

R2 =
ESS

TSS
=

∑
(Ŷi − ¯̂

Y )2∑
(Yi − Ȳ )2

=

∑
(Yi − Ȳ )2∑
(Yi − Ȳ )2

= 1

or

R2 = 1− RSS

TSS
= 1−

∑
(e2i )∑

(Yi − Ȳ )2
= 1− 0∑

(Yi − Ȳ )2
= 1

7. What factors determine the variance (precision) of the least squares estimator?

The variance of the LS estimator decreases (the estimator gets more precise) when:

� the sample size increases

� the variance of X increases

� the variance of ϵ decreases

8. Why does the formula for s2ϵ have an (n− 2) in the denominator?

The (n − 2) is required so that the estimator for the sample variance is unbiased. The “−2” is a
degrees of freedom correction - two things must be estimated (b0 and b1) before the residuals can be
calculated and used to calculate s2ϵ .

9. For the model: Y = β0+β1X+ ϵ, where X is a continuous variable, what is the interpretation of β1?

β1 is the marginal effect of X on Y , or the change in Y due to a one unit change in X.

10. For the model: Y = β0 + β1D + ϵ, where D is a dummy variable, what is the interpretation of β1?

β1 is the difference in the population means of Y for when D = 1 and for D = 0.
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Long Answer

11. This question uses a dataset with n = 200 and two variables: salary - the yearly salary of a worker in
thousands of dollars, experience - the number of years of work experience. The population model:
salary = β0 + β1experience+ ϵ is estimated in R:

summary(lm(salary ~ experience), data = mydata)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 43.3644 2.8322 15.311 <2e-16 ***

experience 0.4999 0.1669 2.994 0.0031 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 20.26 on 198 degrees of freedom

Multiple R-squared: 0.04332 , Adjusted R-squared: 0.03849

F-statistic: 8.966 on 1 and 198 DF , p-value: 0.003101

a) What is the estimated increase in salary due to an increase in experience?

The estimated increase in salary due to an increase in experience is 0.5 thousand dollars per
year.

b) What percentage of the variation in salary can be explained using variation in years of experi-
ence?

R2 = 0.04, meaning that 4% of the variation in salary can be explained using variation in
experience.

c) Use a 95% confidence interval to test the null hypothesis H0 : β1 = 0.

The 95% confidence interval is:

b1 ± 1.96× s.e.(b1) = 0.4999± 1.96× 0.1669 = [0.17, 0.83]

The null hypothesis of 0 is not inside of the confidence interval, so we reject the null hypothesis
at the 5% significance level.

d) What is the p-value for the hypothesis test in part (c)?

The p-value is given in the table of R output. It is 0.0031.

e) One of the observations in the sample is salary = 81.6, experience = 10. Calculate the predicted
value and residual for this observation.

For the observation with salary = 81.6 and experience = 10, the predicted salary value is:

Ŷ = 43.3644 + 0.4999× 10 = 48.4
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and the residual is:
e = Y − Ŷ = 81.6− 48.4 = 33.2

12. This question uses data on mark - the final percentage mark for the course (0% - 100%) for a student
in ECON 3040 last semester, and attend - a dummy variable equal to 1 if the student was in
attendance, and 0 if the student was not in attendance (attendance was only taken for one day). The
population model: mark = β0 + β1attend+ ϵ is estimated in R:

summary(lm(mark ~ attend , data = attend ))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.075 4.989 13.445 <2e-16 ***

attend 7.576 6.340 1.195 0.239

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 19.95 on 40 degrees of freedom

Multiple R-squared: 0.03446 , Adjusted R-squared: 0.01032

F-statistic: 1.428 on 1 and 40 DF , p-value: 0.2392

a) What is the sample average mark for students who did not attend class? What is the sample
average mark for students who did attend class?

The sample average for those who did not attend is equal to b0 = 67.075. The sample average
for those who did attend is b0 + b1 = 67.075 + 7.576 = 75.651.

b) Test the hypothesis that attendance has no effect on marks.

The null hypothesis is H0 : β1 = 0. The summary() function automatically performs this
hypothesis test. The p-value for this test is 0.239, so we fail to reject the null hypothesis at the
10% significance level.

c) Suppose that I used the same data, but instead estimated the model: mark = β0+β1absent+ϵ,
where absent is a dummy variable equal to 1 if the student was missing from class, and equal to
0 if they were in attendance (the dummy variable has been defined in the opposite way). What
would be the values for b0 and b1 in this situation?

The new values would be b⋆0 = 75.651 and b⋆1 = −7.575.
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Table 1: Area under the standard normal curve, to the right of z.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
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Formula Sheet

expected value (mean) of Y (for discrete Y ) µY =
∑

piYi

variance of Y (for discrete Y ) σ2
Y =

∑
pi (Yi − µy)

2

standard deviation of Y σY =
√
σ2
Y

covariance between X and Y σXY = E [(X − µX) (Y − µY )]

correlation coefficient (between X and Y ) ρXY = σXY
σXσY

expected value of the sample average, Ȳ E(Ȳ ) = µY

variance of the sample average, Ȳ var[Ȳ ] =
σ2
Y
n

sample variance of Y (estimator for σ2
Y ) s2Y = 1

n−1

∑n
i=1

(
Yi − Ȳ

)2
sample variance of e (estimator for σ2

ϵ ) s2ϵ =
1

n−2

∑n
i=1 e

2
i

t-statistic t = estimate − hypothesis
std. error

95% confidence interval estimate ± 1.96× std. error

LS estimator for β1 (single regressor model) b1 =
∑n

i=1(Xi−X̄)(Yi−Ȳ )∑n
i=1(Xi−X̄)

2

LS estimator for β0 (single regressor model) b0 = Ȳ − b1X̄

variance of b1 (single regressor model) var [b1] =
σ2
ϵ∑

X2
i −

(
∑

Xi)
2

n

LS predicted values (single regressor model) Ŷi = b0 + b1Xi

LS residuals ei = Yi − Ŷi

R-squared R2 = ESS
TSS = 1− RSS

TSS

TSS
∑n

i=1

(
Yi − Ȳ

)2
ESS

∑n
i=1

(
Ŷi − ¯̂

Y
)2

RSS
∑n

i=1

(
e2i
)
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