Econ 3040 A01 - Midterm - Winter 2023

Ryan T. Godwin

The exam is 70 minutes long, and consists of 72 marks (**approximately 1 mark per minute**). There are 10 short answer questions, each worth 4 marks. There are two long answer questions with 8 parts total, each part worth 4 marks. Write all answers in the provided exam booklet. You may only have a calculator and writing implements at your table. You may not use any books, notes, formula sheets, computers, or phones. A table of areas under the standard Normal curve is provided at the back of the exam, as well as a formula sheet.

DO NOT OPEN THIS EXAM BOOKLET UNTIL INSTRUCTED TO DO SO.

DON'T TOUCH! (Until instructed to do so).

Short Answer

- 1. What is meant by "the realization of a random variable"? How does this idea relate to a sample of data?
- 2. What does it mean for an estimator to be unbiased?
- 3. Suppose that there is a random variable Y, with E[Y] = 2 and var[Y] = 3. What are the mean and variance of Z, where Z = 2Y + 1?
- 4. How does the central limit theorem relate to \bar{Y} and b_1 ?
- 5. Why are the least squares residuals sometimes called "prediction errors"?
- 6. Prove that if all data points line up (fall on the least squares estimated line), then $R^2 = 1$.
- 7. What factors determine the variance (precision) of the least squares estimator?
- 8. Why does the formula for s_{ϵ}^2 have an (n-2) in the denominator?
- 9. For the model: $Y = \beta_0 + \beta_1 X + \epsilon$, where X is a continuous variable, what is the interpretation of β_1 ?
- 10. For the model: $Y = \beta_0 + \beta_1 D + \epsilon$, where D is a dummy variable, what is the interpretation of β_1 ?

Long Answer

11. This question uses a dataset with n = 200 and two variables: salary - the yearly salary of a worker in thousands of dollars, experience - the number of years of work experience. The population model: $salary = \beta_0 + \beta_1 experience + \epsilon$ is estimated in R:

```
summary(lm(salary ~ experience), data = mydata)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                    2.8322
(Intercept) 43.3644
                                15.311
                                         <2e-16 ***
experience
             0.4999
                        0.1669
                                  2.994
                                          0.0031 **
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 20.26 on 198 degrees of freedom
Multiple R-squared: 0.04332,
                               Adjusted R-squared:
                                                     0.03849
F-statistic: 8.966 on 1 and 198 DF, p-value: 0.003101
```

- a) What is the estimated increase in salary due to an increase in experience?
- b) What percentage of the variation in salary can be explained using variation in years of experience?
- c) Use a 95% confidence interval to test the null hypothesis $H_0: \beta_1 = 0$.
- d) What is the p-value for the hypothesis test in part (c)?
- e) One of the observations in the sample is salary = 81.6, experience = 10. Calculate the predicted value and residual for this observation.
- 12. This question uses data on mark the final percentage mark for the course (0% 100%) for a student in ECON 3040 last semester, and attend - a dummy variable equal to 1 if the student was in attendance, and 0 if the student was not in attendance (attendance was only taken for one day). The population model: $mark = \beta_0 + \beta_1 attend + \epsilon$ is estimated in R:

```
summary(lm(mark ~ attend, data = attend))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.075 4.989 13.445
                                          <2e-16 ***
attend
              7.576
                        6.340
                                 1.195
                                           0.239
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 19.95 on 40 degrees of freedom
Multiple R-squared: 0.03446,
                              Adjusted R-squared:
                                                     0.01032
F-statistic: 1.428 on 1 and 40 DF, p-value: 0.2392
```

- a) What is the sample average mark for students who *did not* attend class? What is the sample average mark for students who *did* attend class?
- b) Test the hypothesis that attendance has no effect on marks.
- c) Suppose that I used the same data, but instead estimated the model: $mark = \beta_0 + \beta_1 absent + \epsilon$, where *absent* is a dummy variable equal to 1 if the student was *missing* from class, and equal to 0 if they were in attendance (the dummy variable has been defined in the opposite way). What would be the values for b_0 and b_1 in this situation?

Table 1: Area under the standard normal curve, to the right of z .										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002

Table 1: Area under the standard normal curve, to the right of z.

Formula Sheet

expected value (mean) of Y (for discrete Y)	$\mu_Y = \sum p_i Y_i$
variance of Y (for discrete Y)	$\sigma_Y^2 = \sum p_i \left(Y_i - \mu_y \right)^2$
standard deviation of Y	$\sigma_Y = \sqrt{\sigma_Y^2}$
covariance between X and Y	$\sigma_{XY} = E\left[\left(X - \mu_X\right)\left(Y - \mu_Y\right)\right]$
correlation coefficient (between X and Y)	$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$
expected value of the sample average, \bar{Y}	$E(\bar{Y}) = \mu_Y$
variance of the sample average, \bar{Y}	$\operatorname{var}[\bar{Y}] = \frac{\sigma_Y^2}{n}$
sample variance of Y (estimator for σ_Y^2)	$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$
sample variance of e (estimator for σ_{ϵ}^2)	$s_{\epsilon}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}$
t-statistic	$t = \frac{\text{estimate - hypothesis}}{\text{std. error}}$
95% confidence interval	estimate $\pm 1.96 \times \text{std. error}$
LS estimator for β_1 (single regressor model)	$b_1 = rac{\sum_{i=1}^n (X_i - ar{X}) (Y_i - ar{Y})}{\sum_{i=1}^n (X_i - ar{X})^2}$
LS estimator for β_0 (single regressor model)	$b_0 = \bar{Y} - b_1 \bar{X}$
variance of b_1 (single regressor model)	$\operatorname{var}[b_1] = \frac{\sigma_{\epsilon}^2}{\sum X_i^2 - \frac{(\sum X_i)^2}{n}}$
LS predicted values (single regressor model)	$\hat{Y}_i = b_0 + b_1 X_i$
LS residuals	$e_i = Y_i - \hat{Y}_i$
R-squared	$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$
TSS	$\sum_{i=1}^{n} \left(Y_i - \bar{Y} \right)^2$
ESS	$\sum_{i=1}^{n} \left(\hat{Y}_i - \bar{\hat{Y}} \right)^2$
RSS	$\sum_{i=1}^{n} \left(e_i^2 \right)$