
Econ 3040 Final Exam

Ryan T. Godwin

The exam is 3 hours long, and consists of 100 marks. There are 15 questions. There is a table of critical
values for the F-statistic, a table of standard Normal probabilities, and a formula sheet, at the end of the
exam.

Short answer - each question worth 4 marks - 40 marks total

1. A random variable X is equal to 1 with probability 0.4, and equal to 4 with probability 0.6. What is
the mean and variance of X?

E[X] = 0.4× 1 + 0.6× 4 = 2.8 (2)

var[X] = 0.4× (1− 2.8)2 + 0.6× (4− 2.8)2 = 2.16 (2)

2. How is the least-squares estimator derived? (Where does the equation for b0, b1, etc. come from?)
Don’t try to derive the formula, just set-up the problem, or describe the process.

The b0 and b1 formulas result from a calculus minimization problem, where the sum-of-squared residuals
(
∑

e2i ) are minimized by choosing b0 and b1.

3. What does it mean for least-squares to be the most “efficient” estimator?

It means that it has the smallest variance among all other linear and unbiased estimators for β. The
Gauss-Markov theorem proves this result.

4. Why are estimators random variables?

Because they are calculated from a random sample of data.

5. Why does R2 always increase when a variable is added to the model? How does R̄2 fix the problem?

Adding another variable adds another β. The minimization problem becomes easier. Sum of squared
residuals must decrease, R2 must increase. R̄2 fixes the problem by introducing a penalty for the
number of variables, k.

6. Explain the main problem with the following population model:

wage = β0 + β1educ+ β2male+ β3female+ ϵ

This is the dummy variable trap; there is perfect multicollinearity. For only two genders, male +
female = 1; there is a perfect link between the two variables.

7. This question uses the diamond price data:
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summary(lm(price ~ carat + I(carat^2), data=diam)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.51 316.37 -0.134 0.8932

carat 2786.10 1119.61 2.488 0.0134 *

I(carat ^2) 6961.71 868.83 8.013 2.4e-14 ***

What is the predicted increase in price due to an increase in carats? Your answer should include several
numbers.

Predict two different 0.1 increases.

0.1 - 0.2 487.4613

0.2 - 0.3 626.6955

0.3 - 0.4 765.9297

0.4 - 0.5 905.1639

0.5 - 0.6 1044.398

0.6 - 0.7 1183.632

0.7 - 0.8 1322.866

0.8 - 0.9 1462.101

0.9 - 1.0 1601.335

1.0 - 1.1 1740.569

1.1 - 1.2 1879.803

8. For the model in question 7, how would you go about determining the appropriate degree (r) of the
polynomial?

You could test the significance of the highest order of the polynomial. If you fail to reject, drop the
variable, and repeat. Stop once you reject the null. The highest order term still left in the equation is
the “appropriate” degree of the polynomial.

9. What is imperfect multicollinearity?

When two variables are highly correlated. This results in uncertainty around the estimated effects of
those variables; high standard errors, large confidence intervals. Interpretation and properties of other
estimators are unaffected.

10. The following population model:

log(CO2) = β0 + β1 log(GDP ) + ϵ

is estimated in R:

co2mod <- lm(log(co2) ~ log(gdp.per.cap), data = co2)

summary(co2mod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.94045 0.36806 -27.01 <2e-16 ***

log(gdp.per.cap) 1.20212 0.04234 28.39 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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CO2 is per capita carbon dioxide emissions, and GDP is GDP per capita, for 134 different countries.
What is the interpretation of the estimated value of 1.20212?

A 1% increase in GDP per capita is associated with a 1.2% increase in CO2 emissions.

Long answer - each part worth 3 marks - 60 marks total

11. This question involves heteroskedasticity. First, a wage model is estimated using least squares:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.53764 0.70887 0.758 0.448521

education 0.18311 0.11333 1.616 0.106753

gendermale 0.69499 0.20315 3.421 0.000672 ***

age -0.06472 0.11345 -0.570 0.568616

experience 0.07754 0.11355 0.683 0.494959

education:gendermale -0.03362 0.01531 -2.196 0.028545 *

then, heteroskedastic robust standard errors are calculated (using the “sandwich” and “lmtest” packages
like you did in assignment 4):

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.537643 0.194521 2.7639 0.0059104 **

education 0.183114 0.011411 16.0471 < 2.2e-16 ***

gendermale 0.694988 0.191017 3.6384 0.0003013 ***

age -0.064716 0.013117 -4.9339 1.082e-06 ***

experience 0.077542 0.014099 5.4997 5.936e-08 ***

education:gendermale -0.033616 0.014731 -2.2819 0.0228902 *

a) What are homoskedasticity and heteroskedasticity?
Homoskedasticity is when the variance of the error term is constant for all observations: var(ϵi) =
σ2 ∀ i. Heteroskedasticity is when the variance of the error term differs between observations:
var(ϵi) = σ2

i .

b) What is wrong with assuming homoskedasticity, when there is actually heteroskedasticity?
If we assume that there is homoskedasticy, when in reality the data is heteroskedastic, the estimator
for the standard errors is inconsistent (it is based on the wrong formula). Confidence intervals,
test statistics and their associated p-values, are all incorrect. Hypothesis testing is invalid.

c) How could you use the first estimated model to test for heteroskedasticity?
To perform White’s test for heteroskedasticity, you would store the residuals from the first model.
Then you would regress the squared residuals on all x variables, their squared values, and cross
products. If the R2 from this regression is high enough, then there is an explanation for the size
of the squared residuals, and you would reject the null of homoskedasticity.

d) Point out the importance of using robust standard errors by using the output above.
Using robust standard errors changes everything in the ouptut table, except for the estimated βs.
A very important change is that, under the robust estimator, all of the variables now appear to
be statistically significant.
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12. Two models are estimated to explain the effect of installing a fireplace on the selling price of a house
(in dollars). The R output for the regression results are given below:

house.mod1 <- lm(Price ~ Fireplaces + Bathrooms , data=house)

summary(house.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44771 5743 7.796 1.10e-14 ***

Fireplaces 25414 3749 6.778 1.67e-11 ***

Bathrooms 79940 3167 25.241 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 77970 on 1725 degrees of freedom

Multiple R-squared: 0.3734 , Adjusted R-squared: 0.3727

F-statistic: 514 on 2 and 1725 DF, p-value: < 2.2e-16

house.mod2 <- lm(Price ~ Fireplaces + Living.Area + Bathrooms , data=house)

summary(house.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -118.217 5369.069 -0.022 0.982

Fireplaces 5232.053 3384.481 1.546 0.122

Living.Area 91.431 3.928 23.276 < 2e-16 ***

Bathrooms 25511.611 3620.039 7.047 2.63e-12 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 68030 on 1724 degrees of freedom

Multiple R-squared: 0.5232 , Adjusted R-squared: 0.5224

F-statistic: 630.6 on 3 and 1724 DF, p-value: < 2.2e-16

a) What is the main difference between the two models? (If you had to focus on just one difference,
what would it be?)
The estimated effect of Fireplaces on Price changes from $25,414 to $5,232. This is a very large
swing in the estimated marginal effect.

b) What is the problem with the first model? (Why is it worse than the second model?)
The first model has omitted variable bias. It is missing an important variable that is correlated
to both Fireplaces and Price. The estimator for the marginal effect in the first model is wrong
(biased and inconsistent).

c) Using the second model: how much do you predict a 2000 square foot house with 2 bathrooms
and 1 fireplace would sell for?

ˆPrice = −118.217 + 5323.053(1) + 91.431(2000) + 25511.611(2) = 239090.10

d) What are the F-statistics of 514 and 630.6 for?
These are F-statistics for tests of the overall significance of any of the variables in the model.
For example, in the first model the null hypothesis being tested is H0 : βFireplaces = 0 and
βBathrooms = 0.
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13. When estimating the model:

wage = β0 + β1education+ β2gender + β3age+ β4experience+ ϵ

the results indicate that age and experience are insignificant :

summary(lm(wage ~ education + gender + age + experience , data=cps))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.9574 6.8350 -0.286 0.775

education 1.3073 1.1201 1.167 0.244

genderfemale -2.3442 0.3889 -6.028 3.12e-09 ***

age -0.3675 1.1195 -0.328 0.743

experience 0.4811 1.1205 0.429 0.668

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.458 on 529 degrees of freedom

Multiple R-squared: 0.2533 , Adjusted R-squared: 0.2477

F-statistic: 44.86 on 4 and 529 DF, p-value: < 2.2e-16

so, the variables age and experience are dropped from the model, and we get:

summary(lm(wage ~ education + gender , data=cps))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.21783 1.03632 0.210 0.834

education 0.75128 0.07682 9.779 < 2e-16 ***

genderfemale -2.12406 ? -5.273 1.96e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.639 on 531 degrees of freedom

Multiple R-squared: 0.1884 , Adjusted R-squared: 0.1853

F-statistic: 61.62 on 2 and 531 DF, p-value: < 2.2e-16

a) What are the benefits to “dropping” variables from a model?
Simpler models are always better; they are easier to understand, estimate, and communicate.
Statistically speaker, smaller models are more efficient (the estimators have smaller variance).
This is because the entire dataset can focus on estimating fewer βs.

b) Why shouldn’t we use t-tests to determine if these two variables can be dropped?
Even though the individual t-statistics on these two variables indicate that they are insignificant,
we shouldn’t use the t-test to decide whether to drop both of the variables. If they are correlated,
then so are the bs, and so are the t-statistics. We need to take into account this correlation if we
want to test a joint hypothesis.

c) Test the null hypothesis:

H0 : β3 = 0 and β4 = 0

What do you conclude?
As this is a joint hypothesis, we need to use an F test. The F-statistic is:
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F =

(
R2

U −R2
R

)
/q(

1−R2
U

)
/ (n− kU − 1)

=
(0.2533− 0.1884) /2

(1− 0.2533) / (529)

= 22.99

Looking at Table 2, the appropriate critical value is 3.00. Since thhe F-stat of 22.99 is greater than
this critical value, we reject the null at the 5% significance level. Even thought these variables
appear to be insignificant according to the t-tests, they are jointly significant (we can’t drop them
both).

d) In the second table, what is the value for the missing (?) Std. Error?

The null hypothesis in the table is H0 : bi = 0, so the t-statistic is:

t =
bi − 0

se(bi)

so the missing standard error is:

se(bi) =
bi

se(ti)
=

−2.124

−5.273
= 0.403

14. This question is about differences-in-differences (DiD). A minimum wage increase happened in City B
(this is the “treatment” group). There was no minimum wage increase in City A (the “no-treatment”
group), but City A and City B are otherwise very similar. The number of employees in 100 retail stores
(where workers are paid minimum wage) is observed in each city, both before and after the minimum
wage increase.

Table 1: Average number of workers in 100 retail stores in City A (where there was no minimum wage
increase) and City B (where there was a minimum wage increase). The number of workers is measured
both before the minimum wage increase (at time = 0) and after the minimum wage increase (at time =

1).

time = 0 time = 1

City A
treatment.group = 0 35.2 25.7

City B
treatment.group = 1 32.1 27.1

The variables in the data are:

Variable Description

employed the number of workers employed in a retail store
time = 1 if after the minimum wage increase

= 0 if before the minimum wage increase
treatment.group = 1 if in City B (where the minimum wage increase happened)

= 0 if in City A (no minimum wage increase)

a) The average number of employees in the retail stores in City B fell by 5 after the minimum wage
increase. What is the problem with claiming that the minimum wage increase caused this decline
in employment?
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The causal effect is the difference between reality, and counterfactual. The reality is that employ-
ment fell from 32.1 to 27.1. But what would it have been if there had been no minimum wage
increase? It is unlikely that it would have stayed flat at 32.1 over time. Other things could have
caused the decrease, for example the economy could have been heading into a recession. Maybe
it would have dropped to 27.1 anyway?

b) What is the DiD estimator for the effect of the minimum wage increase on employment?
The difference in employment for City A is 25.7 − 35.2 = −9.5. DiD assumes that this is what
would have happened for City B if there was no wage increase. What actually happened was −5.
Employment is actually 4.5 higher than what it should have been. This is the DiD estimate. DiD
estimate = (difference in treatment group) - (difference in control group).

c) What assumption needs to be made for the DiD estimator in part (b) to work?
The assumption that: what happened in City A would also have happened in City B (in the
absence of a wage increase) is called the parallel trends assumption.

d) The model:

employed = β0 + β1treatment.group+ β2time+ β3(treatment.group× time) + ϵ

is estimated using the data above. What is the estimated value of β3?
The estimate for β3 is also the DiD estimator, so it will be equal to 4.5. β3 is the extra difference
in employment over time, for the treatment group.

e) Bonus question. What are the estimated values of β0, β1, and β2?
b0 = 35.2, b1 = −3.1, b2 = −9.5

15. This question involves instrumental variables. Consider the simple model:

y = β0 + β1x+ ϵ

a) Suppose that there is a missing variable m that is correlated with both the dependent variable y,
and a regressor x. In this case, what happens to the least-squares estimator b1? (What are the
properties of b1?)
The LS estimator is biased and inconsistent.

b) What properties must an instrument z have, in order to be “valid”? (In order for it to work in
instrumental variables estimation?)
z must be correlated to the “problem” endogenous x variable, and must be uncorrelated with the
missing variable (uncorrelated with the error term).

Now, consider the wage, education, and distance from college data. First a model is estimated by LS:

college <- read.csv("https://rtgodwin.com/data/collegedist.csv")

ls <- lm(wage ~ education + urban + gender + ethnicity + unemp , data=college)

summary(ls)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.000192 0.156928 50.980 <2e-16 ***

education 0.005369 0.010362 0.518 0.6044

urbanyes 0.070117 0.044727 1.568 0.1170

gendermale 0.085242 0.037069 2.300 0.0215 *

ethnicityhispanic 0.012048 0.062385 0.193 0.8469

ethnicityother 0.556056 0.052167 10.659 <2e-16 ***

unemp 0.133101 0.006711 19.834 <2e-16 ***

and then by instrumental variables (IV) estimation, using distance from college as the instrument:
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iv <- ivreg(wage ~ education + urban + gender + ethnicity + unemp |

distance + urban + gender + ethnicity + unemp ,

data=college)

summary(iv)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.65702 1.83641 -0.358 0.7205

education 0.64710 0.13594 4.760 1.99e-06 ***

urbanyes 0.04614 0.06039 0.764 0.4449

gendermale 0.07075 0.04997 1.416 0.1569

ethnicityhispanic -0.12405 0.08871 -1.398 0.1621

ethnicityother 0.22724 0.09863 2.304 0.0213 *

unemp 0.13916 0.00912 15.259 < 2e-16 ***

c) Describe the major important difference between the two estimated models.
There is a massive swing in the estimated returns to education.

d) How does the two-stage least squares (2SLS) procedure work? Explain the steps using the above
example.
First, education is regressed on the instrument and the other x variables, getting the predicted

values ̂education from this regression. Second, the model is estimated using LS, but replacing

education with ̂education.

END
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Table 2: Critical values for the F -test statistic.
q 5% critical value

1 3.84
2 3.00
3 2.60
4 2.37
5 2.21

Table 3: Area under the standard normal curve, to the right of z.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
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Econ 3040 Final Exam Formula Sheet

expected value (mean) of Y (for discrete Y ) µY =
∑

piYi

variance of Y (for discrete Y ) σ2
Y =

∑
pi (Yi − µy)

2

standard deviation of Y σY =
√
σ2
Y

covariance between X and Y σXY = E [(X − µX) (Y − µY )]

correlation coefficient (between X and Y ) ρXY = σXY
σXσY

expected value of the sample average, Ȳ E(Ȳ ) = µY

variance of the sample average, Ȳ σ2
Ȳ
=

σ2
Y
n

sample variance of Y (estimator for σ2) s2Y = 1
n−1

∑n
i=1

(
Yi − Ȳ

)2
sample variance of y in a regression model s2y = 1

n−k−1

∑n
i=1 e

2
i

t-statistic (assuming large n) t = estimate − hypothesis
std. error

95% confidence interval estimate ± 1.96× std. error

LS estimator for β1 (single regressor model) b1 =
∑n

i=1(Xi−X̄)(Yi−Ȳ )∑n
i=1(Xi−X̄)

2

LS estimator for β0 (single regressor model) b0 = Ȳ − b1X̄

variance of b1 (single regressor model) var [b1] =
σ2
ϵ∑

X2
i −

(
∑

Xi)
2

n

LS predicted values (single regressor model) Ŷi = b0 + b1Xi

LS residuals ei = Yi − Ŷi

R-squared R2 = ESS
TSS = 1− RSS

TSS

adjusted-R-squared R̄2 = 1− RSS/(n−k−1)
TSS/(n−1)

F-statistic F =
(R2

U−R2
R)/q

(1−R2
U)/(n−kU−1)

IV estimator β̂IV =
∑

[(y−ȳ)(z−z̄)]∑
[(x−x̄)(z−z̄)]
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