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Figure: Possible heteroskedasticity in the CPS data. The variance in wage

may be increasing as education increases. The reasoning is that individuals
who have not completed highschool (or university) are precluded from
many high-paying jobs (doctors, lawyers, etc.). However, having many
years of education does not preclude individuals from low-paying jobs. The
spread in wages is higher for highly educated individuals.
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We have been assuming homoskedasticity

The estimators that we have used so far have good statistical
properties provided that the following assumptions hold:

1. The population model is linear in the βs.

2. There is no perfect multicollinearity between the X variables.

3. The random error term, ε, has mean zero.

4. ε is identically and independently distributed.

5. ε and X are independent.

6. ε is Normally distributed.

These ensure LS is unbiased, efficient, and consistent, and that
hypothesis testing is valid. A violation of one or more of these
assumptions might lead us to estimators beyond LS.

We will consider that assumption 4 is violated in a particular way.
Specifically, we consider what happens where the error term, ε, is not
identically distributed.
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Homoskedasticity

If assumption A4 is satisfied, then ε is identically distributed. This
means that all of the εi have the same variance. That is, all of the
random effects that determine Y , outside of X, have the same
dispersion. The term homoskedasticity (same dispersion) refers to this
situation of identically distributed error terms.
Stated mathematically, homoskedasticity means:

Var[εi|Xi] = σ2 , ∀i

The variance of ε is constant, even conditional on knowing the value
of X.
Homoskedasticity means that the squared vertical distance of each
data point from the (population or estimated) line is, on average, the
same. The values of the X variables do not influence this distance
(the variance of the random unobservable effects are not determined
by any of the values of X). See figure 2.
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Figure: Homoskedasticity. The average squared vertical distance from the
data points to the OLS estimated line is the same, regardless of the value of
X.
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Heteroskedasticity

Heteroskedasticity refers to the situation where the variance of the
error term ε is not equal for all observations. The term
heteroskedasticity means differing dispersion. Mathematically:

Var[εi|Xi] 6= σ2 , ∀i

or
Var[εi|Xi] = σ2

i

Each observation can have its own variance, and the value of X may
influence this variance.

Heteroskedasticity means that the squared vertical distance of each
data point from the estimated regression line is not the same on
average, and may be influenced by one or more of the X variables.
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Figure: Heteroskedasticity. The squared vertical distance of a data point
from the OLS estimated line is influenced by X.
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The implications of heteroskedasticity

Heteroskedasticity is a violation of A.4, since each εi is not identically
distributed. Heteroskedasticity has two main implications for the
estimation procedures we have been using in this book:

1. The OLS estimator is no longer efficient.

2. The estimated standard errors are inconsistent.

The inefficency of OLS is arguably a smaller problem than the
inconsistency of the variance estimator. The second issue means that
the estimated standard errors in our regression output are wrong,
leading to the incorrect t-statistics and confidence intervals.
Hypothesis testing, in general, is invalid. The problem arises because
the formula that is the basis for estimating the standard errors in
OLS:

Var [b1] =
σ2
ε∑

X2
i −

(
∑
Xi)

2

n

,

is only correct under homoskedasticity.
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Fixing heteroskedasticity - robust standard errors

To fix the more important problem of the inconsistency of the
standard errors, the formula for Var [b1] must be updated to take into
account the possibility of heteroskedasticity.

Updating the formula to allow for heteroskedasticity in the estimation
of the standard errors gives what is typically referred to as robust
standard errors. In R, we will use the code:

1 install.packages("lmtest")

2 library(lmtest)

3 install.packages("sandwich")

4 library(sandwich)

to install and load a package that can estimate the robust standard
errors, and then use

1 coeftest(my.lm.model , vcov = vcovHC(my.lm.model , "HC1"))

to estimate the correct standard errors and updated t-statistcs and
p-values, where my.lm.model is the least-squares regression that we
have estimated using the lm() command.
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Testing for heteroskedasticity

There are several (approximately) equivalent tests for
heteroskedasticity, but we’ll focus on the most famous: White’s1 test.
In White’s test, the null hypothesis is that there is homoskedasticity,
and the alternative is heteroskedasticity. That is:

H0 : var[εi] = σ2

HA : var[εi] 6= σ2
i

1White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator
and a direct test for heteroskedasticity. Econometrica: journal of the Econometric
Society, 817-838.
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Take a simple population model with two regressors. Remember that
the population model and the estimated model are (respectively):

y = β0 + β1x1 + β2x2 + ε

y = b0 + b1x1 + b2x2 + e

The residual e is the counterpart to the unobservable error term ε!
Sometimes, we can use the residuals to test assumptions or properties
of the error term. For example, we can look to see if the residuals are
homoskedastic or heteroskedastic, in order to infer those propertied
about the error term. That is, if e looks homoskedastic, we will
conclude that so is ε.
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White’s test tries to explain differences in the size of the squared
residuals from a least-squares model by regressing them on the
original x variables, and the squares and cross products of the x. If
the R2 from this regression is high, then we conclude that there is
some pattern to the size of the residuals, and reject the null
hypothesis of homoskedasticity.
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To test for heteroskedasticity in the population model:

y = β0 + β1x1 + β2x2 + ε

we would estimate it by LS, for example by using lm(y x1 + x2).
We then get the squared residuals from this regression, and estimate
the following equation by LS:

e2 = β0 + β1x1 + β2x2 + β3(x1 × x2) + β4x
2
1 + β5x

2
2 + ε (1)
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Equation 1 is looking for any approximate way to explain variation in
the size of the squared residuals. If the estimated model from
equation 1 fits well (in terms of the R-squared), then there is some
explanation for the variance in the error term, and the error term is
heteroskedastic. White’s test statistic is the nR2 from this auxiliary
regression, and the p-value for the test comes from the Chi-square
distribution. As usual, if the p-value is small, we reject the null of
homoskedasticity, in favour of heteroskedasticity.
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To test for heteroskedasticity in R, we need to install and load a
package:

1 install.packages("skedastic")

2 library(skedastic)

and then use:

1 white(my.lm.model , interactions = TRUE)

where my.lm.model is the model we have estimated by LS. If we find
heteroskedasticity, then we need to use heteroskedastic robust
standard errors (such as White’s standard errors).
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Heteroskedasticity in food expenditure data

Download a data set on food expenditure by country, in 2016:

1 food <- read.csv("https://rtgodwin.com/data/foodexp.csv")

The variables are foodexp - food expenditure per capita (in US
dollars), and GDPpercap - GDP per capita. There are 84 countries in
the sample. Plot the data, taking the log of GDP per capita (see
Figure 4):

1 plot(log(food$GDPpercap), food$foodexp , pch=16, xlab="log(

GDP per capita)",

2 ylab="Food expenditure per capita")
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Figure: Food expenditure and log GDP per capita.
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Estimate the population model

The following model for food expenditure:

foodexp = β0 + β1 log(GDPpercap) + ε

can be estimated in R using:

1 food.mod <- lm(foodexp ~ log(GDPpercap), data=food)

2 summary(food.mod)

1 Coefficients:

2 Estimate Std. Error t value Pr(>|t|)

3 (Intercept) -4737.68 451.38 -10.50 <2e-16 ***

4 log(GDPpercap) 677.40 47.81 14.17 <2e-16 ***

5 ---

6 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

1

7

8 Residual standard error: 479 on 82 degrees of freedom

9 Multiple R-squared: 0.71, Adjusted R-squared: 0.7065

10 F-statistic: 200.8 on 1 and 82 DF , p-value: < 2.2e-16
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Test for heteroskedasticity

If heteroskedasticity is present in this data, then the standard errors,
t-statistics, and p-values, are all wrong! Hypothesis testing, and any
conclusions we draw, may be incorrect due to the heteroskedasticity.
To test for heteroskedasticity, we can use White’s test:

1 install.packages("skedastic")

2 library(skedastic)

3 white(food.mod)

1 statistic p.value parameter method alternative

2 <dbl > <dbl > <dbl > <chr > <chr >

3 1 11.6 0.00304 2 White ’s Test greater

The test statistic from the White test is 11.6, with an associated
p-value of 0.00304. We reject the null hypothesis of homoskedasticity.



20/22

To see what the function white() is doing, we’ll calculate the White
test statistic and p-value “by hand”:

1 food.resid.sq <- food.mod$residuals ^ 2

2 summary(lm(food.resid.sq ~ log(GDPpercap) + I(log(GDPpercap)

^ 2), data=food))

1 Coefficients:

2 Estimate Std. Error t value Pr(>|t|)

3 (Intercept) 4703163 3680579 1.278 0.205

4 log(GDPpercap) -1121179 795218 -1.410 0.162

5 I(log(GDPpercap)^2) 67703 42508 1.593 0.115

6

7 Residual standard error: 444800 on 81 degrees of freedom

8 Multiple R-squared: 0.138 , Adjusted R-squared: 0.1167

9 F-statistic: 6.485 on 2 and 81 DF , p-value: 0.002442

The test statistic is nR2 = 84× 0.138 = 11.6 (same as from the
white() command). The p-value can be found from:

1 1 - pchisq (84 * 0.138, 2)

1 0.003039689

which is the same from the white() command.
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White’s heteroskedastic consistent standard errors

To recalculate the standard errors, t-statistics, and p-values, we can
use the coeftest() function:

1 install.packages("lmtest")

2 library(lmtest)

3 install.packages("sandwich")

4 library(sandwich)

5 coeftest(food.mod , vcov = vcovHC(food.mod , "HC1"))

1 t test of coefficients:

2

3 Estimate Std. Error t value Pr(>|t|)

4 (Intercept) -4737.680 476.516 -9.9423 9.705e-16 ***

5 log(GDPpercap) 677.399 54.069 12.5284 < 2.2e-16 ***

6 ---

7 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

1

Notice that the estimated βs have not changed, but that the standard
errors have changed, t-statistics, and p-values have changed.
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Heteroskedastic errors have a pretty severe consequence; hypothesis
testing may be invalid. The prevalence of heteroskedasticity in many
economics data has led to the common practice of erring on the side
of caution. Heteroskedastic robust standard errors are often used, if
heteroskedasticity is suspected. Note that homoskedasticity is a
special case of heteroskedasticity, so the downside of using the robust
estimator when it is not needed, is small.


