Suppose we hypothesize that the variable x causes the variable y, and we want to estimate the marginal effect of x on y. So, we estimate the population equation:

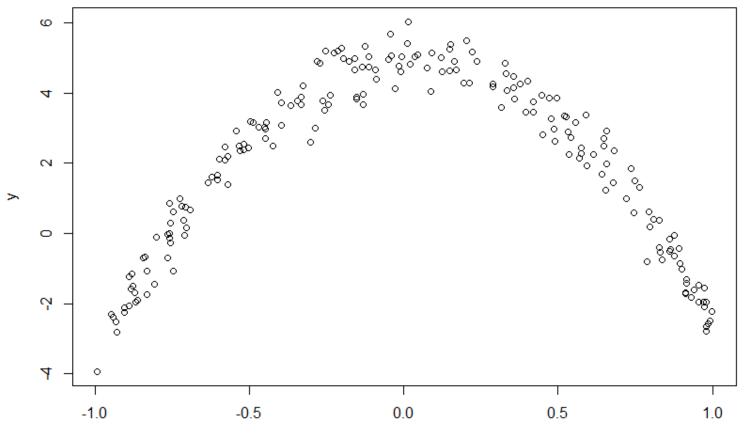
$$y_i = eta_0 + eta_1 x_i + u_i$$
 ,

and find:

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.98142 0.17845 11.10 <2e-16 *** x -0.02331 0.29188 -0.08 0.936 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 2.521 on 198 degrees of freedom Multiple R-squared: 3.22e-05, Adjusted R-squared: -0.005018 F-statistic: 0.006376 on 1 and 198 DF, p-value: 0.9364

What do you conclude?

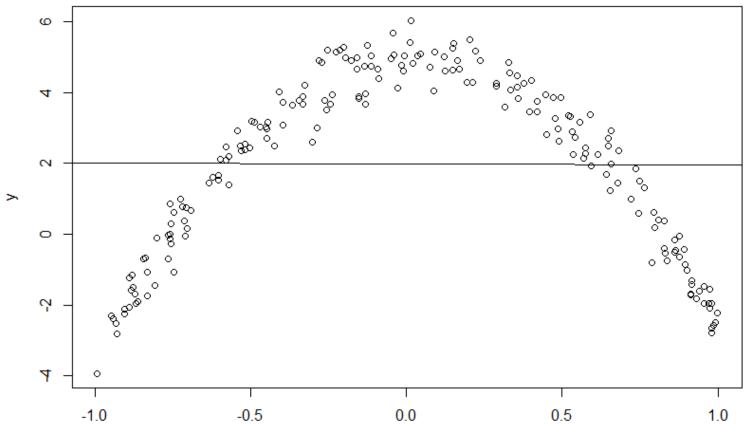
We are missing the possibility of a nonlinear relationship between y and x. plot(x,y)



х

Plot the fitted line form the linear regression:

abline(lm(y ~ x))



Х

The linear model is *misspecified* (a form of omitted variable bias). We can approximate the nonlinear relationship using a polynomial, and instead specify the population model:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + u_i^*$$
.

Usually a quadratic form is enough, but we have included x_i^3 as well. We create the new variables:

x2 <- x^2 x3 <- x^3

and run OLS: summary($lm(y \sim x + x2 + x3)$)

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	4.93434	0.	05298	93.131	< 2e-16	* * *
X	0.60236	0.	15031	4.008	8.71e-05	* * *
x2	-7.93666	0.	11065	-71.730	< 2e-16	* * *
x3	-0.10524	0.	22175	-0.475	0.636	

We find that x_i^3 is insignificant, so we remove it from the estimated model: summary(lm(y ~ x + x2))

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.93537	0.05283	93.41	<2e-16 ***
X	0.53617	0.05591	9.59	<2e-16 ***
x2	-7.94480	0.10909	-72.83	<2e-16 ***

How to interpret the estimated model? Have to consider specific values for x_i .