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OLS — Lecture 2

MPC Example
C=u+MPCxY (4.3)
This is another economic model represenied by a “straight line™.

* g — intercept
s b slope

Figure 4.4 Tneome and consumption in the TLK. {Verheek and Marno,
2008).
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Dcmand for liquor

Llow much less aleohol will people consume if we raise the price? Lo first-
weur wicroeconomics vou learned about the law of demand. The guaatity
demanded of a product should depend on its price (and other things=):

g —a | b (4.1)

® g intereept ﬁ 0
» b slope (should be negative} ﬁi



Figure 4.1: A Lypical demand “eurve” Nute this s an “loverse” demand
curve (qmantity demanded is on the vertical axis, and price on the harizontal
axis).
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Tigure 4.2: Per capila conswuplion, and price, ol spirils. Choosing o line
through the data necessarily chooses the slope of the line, b, which deter-
mines how mnch (3 decreases for an increase in P

o =

Econometric model {population model):

Yi= P04+ 5 ¥ +e (4.4)

Notation |

e;rtnna cr'

o X is called the smdeperbart variable or regressor. 1L I Lhe vardable
Lhat s assumed to epwse the Y ovariable, Lo the *Demand lor Liguor™
exawple, this variable was price (). See equation 4.1 In the MPC
example the Tegressor was income. See eqmation 4.4,

o Y ois the deperedend vaciable, This variable 1s asswmed 1o be caused
by X (it depends on X). In the demand example the dependent vari-
able was gquantity demanded ((Jg) and in the M PC example it was
sonsumption ().
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is the population intercept. Tt was labelled g in hoth examples. Tt
is nmohservable, bt we ean 17 to estimate it.

m|_\'is Lhe populstion slope. When X inereases by 1, Y locreases by
1. 'I'his is the primas n]\!'m of interest, and is imobservable. We
WANT TO osrimnf(w?l 13 ir.m'rp?f;l:a'rﬁs the marginal effect in many
cconomics models,

-f(_]i:i the regression error term, It consists of all the other factors or
varlables that determine Y, other than the X vaddable, ALl of these
ather variables cansing ¥ are combined into &, ¢ is considered ta he a

random variable since we can not observe it
AT Y

., 1. The subseript @ denotes the observation, n is the sample
relers 1o the lourth ¥ observation o the data

= i=1
sige, Tor example,

=et.

4.3.1 The importance of 3,

Note that in equation 4.4, the object of interest i= 1. It is the thing we are
trying to estimate. Tt is the cansal, or marginal effect, of X on V. That is,
a change in X of AX canscs a @) change in Y

AY

g
Ax

4.3.2 The importance of ¢

¢ (epeilon) iz the random cowponent of the wodel Without &, statis-
ties/ecdnometics is nob requireds « represents all of Lhe other things Lhat
determine Y. ather than X, They are all added np and hnped inte this
one random variable. Becanse we can not ohserve all of these other factors,
we colsider them to be random, The fact that/c is random makes') random
ws well,

Later, we will make sowme assumptions about the randomness of ¢, that
will ultimately determine the properties of the way thal we choose Lo esti-
mate 3.

orte ynrm'\[ﬁng F‘"’“’Ss
4.3.3  Why it's ealled a population model

Equalion 4.4 ks called o “population” wodel because 1L represcats the Leue,
rreated” or “determined”. 3

but unknown way in which the ¥ variable 1
and ) are nnknown (and s0 is ¢). We will ohserve a sample of ¥ and X
and usc the sample to try to figure out the fs,



4.4  The estimated model

Our primary goal is to estimate 3 (the marginal effect of X on ¥}, but o
do so we'll also have to estimate 3. This cstimated intercept and slope will
deline a stralght lne, These estinales will be dencted by sad By, the OLS

mtercept and slope.
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dnple example using data that I made up:| Y

Ll The data, and estimated OLS line, are shown in

figure 717 The OLS estimated intercept i= bg = 1, and the estimated slape
-

ordvr el squave

Fignre 4.4: A simple data set with the estimated QLS line in blue. by is the
OLS intercept, and by is the OLS slope.
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The OLS predicted (or fitted) values, are the values for ¥ that we get when
we “plng” the X values hack inta the estimated OLS line. 'These predicted ¥V
values are denoted by V. We ean find each predicted value, Vi, by plugzing
cach Xj into Lhe estimated equation.

Tn general, the estimated equation (or line) is written as:

?:i_bn+b1Xf-

(4.5)

For onr simple example, equation 4.5 becomes ¥; = 1 +0.5X,, and each OLS

predicted values is:
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Figurc 1.5: The OLS predicted values shown by x.
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442 OLS residuals () NOT €1+

An OLS predicted walue tella ns what the estimated madel predicts for ¥
when given a particular vilue of X, When we plug in the sample values [or
X [as we did in the previons section), we see that the predicted valnes (f’,}
dem't euiite line up with the actual ¥ walues. The differences hetween the
two are the OLS vesiduals, The OLS residuals are like prediction errors, and

are determined by: o= fn“"! 5 ?ren{l‘c‘ln'w\ Y: f li@-} 5—-} L|-

Using equation 1.6 for our simaple cxample, cach OLS residual is:
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Figure 1.6: The OLS residuala (e;) are the wertical distances between the
actual dali pointe (vircles) and the OLS predieted values (=),
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The OLS estimators are defined in the following way. 'I'hey are the values

far by and by that minimize the sum of squared vertical distances between
the OLS line sud the actual data points (Y7). These vertical distanees have
already been defined as the QLS residuals (&) So the “objective” is Lo
chorse by and by =0 th:\# is minimized. ‘'his is an aptimization
problens fram Al Tns, Frm T atated, the OLS estimator is the solution
to the minimization problem:

win e (4.8)
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The solution:

(1.10)




