

Probability Review - 2.1 Fundamental Stuff

2.1.1 Randomness

- Unpredictability
- Outcomes we can't predict are random
- Represents an inability to predict
- · Example: rolling two dice

Sample Space

- Set of all outcomes of interest
- Dice example

Event

- · Subset of outcomes
- Example: rolling higher than a 10

2.1.2 Probability

- Between 0 and 1 (or a percentage)
- · "The probability of an event is the proportion of times it occurs in the long run"
- Probability of rolling 7, 12, or higher than 10?

2

2.2 Random Variables

- Translates random outcomes into numerical values
- Die roll has numerical meaning → I drew numbers
- RVs are human-made
- Example: temperature in Celsius, Fahrenheit, Kelvin
- RVs can be discrete or continuous
 A continuous RV always has an infinite number of possibilities
- Probability of temp. being -20 tomorrow?
- Random variable vs. the realization of a random variable

2.3 Probability function

Probability function = probability distribution = probability distribution function (PDF) - probability mass function (PMF) probability function

Usually an equation

list sample space

- Probability function: (i) lists all possible numerical values the RV can take; (ii) assigns a probability to each value.
- Prob. function contains all possible knowledge we can have about

• 2.3 Example: dic roll
$$Pr(Y - y) = \frac{1}{6}; y = 1, \dots, 6$$
(2.2)

(2.3)

Probability function for die roll in a picture:

Figure 2.1: Probability function for the result of a die roll 1.5"

2.3.3 Probabilities of events

Probability function can be used to calculate the probability of events occurring.

Example. Let Y be the result of a die roll. What is the probability of rolling higher than 3?

$$Pr(Y > 3) = Pr(Y = 4) + Pr(Y = 5) - Pr(Y = 6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

2.3.4 Cumulative distribution function (CDF)

- · CDF is related to the probability function
- It's the prob. that the RV is less than or equal to a particular value
- In a picture:

2.4 Moments of a random variable

- "Moment" refers to a concept in physics
- 1st moment is the mean
- 2nd (central) moment is the variance
- 3rd is skewness
- 4th is kurtosis
- · Covariance and correlation is a mixed moment

Moments summarize information about the RV. Moments are obtained from the probability function

8

2.4.1 Mean (expected value)

- · Value that is expected
- · Average through repeated realizations of the RV
- Determined from the probability function (do some math to it)
- Mean is summarized info that is already contained in the prob. function
- Let Y be the RV
- Mean of Y expected value of $Y \mu_Y E[Y]$
- If Y is discrete:

The mean is the weighted average of all possible outcomes, where the weights are the probabilities of each outcome.

9

The equation for the mean of Y(Y is discrete):

$$\mathbb{E}[Y] = \sum_{i=1}^{K} p_i Y_i \tag{2.5}$$

where p_i is the probability of the i^{th} event, Y_i is the value of the i^{th} outcome, and K is the total number of outcomes (K can be infinite). Study this equation. It is a good way of understanding what the mean is.

Exercise: calculate the mean die roll. F(Y) = 3.5

What are the properties of the mean?

10

The equation for the mean of y (y is continuous):

Let y be a random variable. The mean of y is

$$E[y] = \int yf(y) dy$$

If y is normally distributed, then f(y) is equation (2.3), and the mean of y turns out to by μ . You do not need to integrate for this course, but you should have some idea about how the mean of a continuous random variable is determined from its probability function.

The *mean* is different from the *median* and the *mode*, although all are measures of central tendency.

The mean is different from the sample mean or sample average.

The mean comes from the probability function. The sample mean/average comes from a sample of data.

2.4.3 Variance

- · Measure of the spread or dispersion of a RV
- Denoted by σ^2 . The variance of y would be σ_y^2 and the variance of
- Variance is the expected squared difference of a variable from its mean
- · Equation:

$$E\left[\left(Y-E[Y]\right)^{2}\right]=E\left[Y-u_{y}\right]^{2}$$

12

2.4.3 Variance

- · Measure of the spread or dispersion of a RV
- Denoted by σ^2 . The variance of v would be σ_v^2 and the variance of X would be σ_X^2
- Variance is the expected squared difference of a variable from its mean
- Equation:

$$Var(Y) = E[(Y - E[Y])^2]$$
 (2.6)

When Y is a discrete random variable, then equation (2.6) becomes

$$Var(Y) = \sum_{i=1}^{K} \rho_i \times (Y_i - E[Y_i])^2$$
 (2.7)

13

- · For variance (the 2nd moment), we are taking the expectation of a squared term
- For skewness (the 3rd moment), we would take the expectation of a cubed term, etc.

Exercise: ealculate the variance of a die roll $Vov\left(\frac{1}{2}\right) = \frac{1}{6}\left(1 - 3.5\right)^2 + \frac{1}{6}\left(2 - 3.5\right)^2 + \dots + \frac{1}{6}\left(6 - 3.5\right)^2 \approx 2.92$

What are the properties of the variance?

$$Var[cY] = c^2 Var[Y] \quad Var[c+Y] = Var[Y] \quad Var[c] = 0$$

Exercise: I change the sides of the die to equal 2,4,6.8,10,12. What is the mean and variance of the die roll?

Exercise: What is the mean and variance of the sum of two dice?

2.4.5 Covariance

- Measures the relationship between two random variables
- Random variables Y and Y have a joint probability function
- Joint prob. func.: (i) lists all possible combos of Y and X; (ii) assign a probability to each combination
- A useful summary of a joint probability function is the covariance
- The covariance between Y and X is the expected difference of Y from its mean, multiplied by the expected difference of X from its mean
- · Covariance tells us something about how two variables are related, or how they move together
- · Tells us about the direction and strength of the relationship between two variables

$$P(Y=y) = \frac{1}{12}; y=1,3,4,5,6$$

$$P(Y=2) = \frac{7}{12}$$

$$E[Y] = \frac{1}{12}(1) + \frac{7}{12}(2)$$

$$1... + \frac{1}{12}(6) \approx 26$$

$$Vor(Y) = \frac{1}{12}(1-2.6)^{2} + \frac{1}{12}(2-2.6)^{3}$$

$$Cov(Y, X) = \mathbb{E}[(Y - \mu_Y)(X - \mu_Y)] \qquad (2.8)$$

The covariance between Y and X is often denoted as $\sigma_{1,X}$. Note the following properties of σ_{VX} :

- σ_{YX} is a measure of the *kneer* relationship between Y and X. Nonlinear relationships will be discussed later.
- * $\sigma_{YX} = 0$ means that Y and X are linearly independent.
- If Y and X are independent (neither variable causes the other), then $\sigma_{YY}=0$. The converse is not necessarily true (because of non-linear relationships).

relationships).

• The
$$Cov(Y,Y)$$
 is the $Var(Y)$. $Cov(Y,Y) = E[(Y-M_Y)(Y-M_Y)] = E[(Y-M_Y)^2] = Vov(Y)$

- A positive covariance means that the two variables tend to differ from their mean in the same direction.
- · A negative covariance means that the two variables tend to differ from their mean in the apposite direction.

covariance/correlation

2.4.6 Correlation

- Correlation usually denoted by ϱ
- · Similar to covariance, but is easier to interpret

$$\rho_{YX} = \frac{|\text{Cov}(Y, X)|}{\sqrt{\text{Var}(Y)\text{Var}(X)}} = \frac{\sigma_{YX}}{\sigma_{Y}\sigma_{X}}$$
(2.9)

The difficulty in interpreting the value of covariance is because $-\infty < \sigma_{YX} < \infty$. Correlation transforms covariance so that it is bound between -1 and 1. That is, $-1 \le \rho_{YX} \le 1$.

- ρ_{YX} = I means perfect positive linear association between Y and X.
- $\rho_{YX} = -1$ means perfect negative linear association between Y and
- $\rho_{YX} = 0$ means no linear association between Y and X (linear inde-

17

2.4.7 Conditional distribution

- Joint distribution 2 RVs
- Conditional distribution fix (condition on) one of those RVs
- Condition expectation the mean of one RV after the other RV has been "fixed"

Let Y be a discrete random variable. Then, the conditional mean of Ygiven some value for X is

$$E(Y|X = x) = \sum_{i=1}^{K} (p_i|X = x)Y_i$$
 (2.10)

. If the two RVs are independent, the conditional distribution is the same as the marginal distribution

doesn't

Example: Blizzard and cancelled midterm

Suppose that you have a midterm tomorrow, but there is a possibility of a blizzard. You are wondering if the midterm might be cancelled.

- > E[Y] = (.7)1 + (2)0 =0.77 • What is E[Y]? What is E[Y X = 1]?
- What is the covariance and correlation between X and Y?

More exercises in the "Review Questions"

2.5 Some special probability functions (i) lists all possibilities The normal distribution (ii) prob. assigned to possibilities

2.5.1 The normal distribution

• Common because of the "central limit theorem" (in a few slides)

$$f(y|\underline{u},\underline{\sigma^2}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(y-\underline{p})^2}{2\sigma^2}}$$
(2.3)

- Mean of y is μ
- Variance of y is σ^2

20

2.5.2 The standard normal distribution

- Special case of a normal distribution, where $\mu = 0$ and $\sigma^2 = 1$
- Equation 2.3 becomes:

$$f(y) = \frac{1}{\sqrt{2\pi}} \exp \left(\frac{-y^2}{2}\right)$$

(2.11)

- Any normal random variable can be "standardized"
 How to standardize? Subtract And divide by T
- · Standardizing has long been used in hypothesis testing (as we shall see)

21

Figure 2.3: Probability function for a standard normal variable, $p_{y<-2}$ in

2.5.3 The central limit theorem

- · There are hundreds of different probability functions
- Examples: Poisson, Binomial, Generalized Pareto, Nakagami, Uniform
- So why is the normal distribution so important? Why are so many RVs.normal?
- Answer: CLT
- CLT (loosely speaking) if we add up enough RVs, the resulting sum tends to be normal

Exercise: draw the probability function for one die roll, then for the sum of two dice.

23

Figure 2.1: Probability function for the result of a die roll

24

Figure 2.4: Probability function for the sum of two dice

25

Figure 2.5: Probability function for three dice, and normal distribution \mathbf{r}

26

Figure 2.6: Probability function for eight dice, and normal distribution \overline{C}

27

2.5.4 The chi-square distribution

- Add to a normal RV still normal
 Multiply a normal RV still normal
- Square a normal RV now it is chi-square distributed
- We will use the chi-square distribution for the F-test in a later chapter