

Two dummy variables without an interaction

As an example, we will use a version of the CPS data:

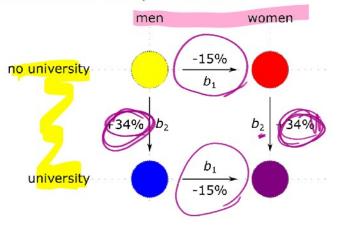
In this example, the university variable is a **dummy** variable which equals to 1 if the individual has a university (BA) degree, and 0 otherwise. The other dummy variable in the data is female.

Variable	Description
wage	hourly wage of the worker
female	= 1 if the individual is female
	= 0 if male
university	= 1 if the individual has a university degree
	= 0 if no university degree
age	the age of the worker in years

1

$$\log(wage) = \beta_0 + \beta_1 female + \beta_2 university + \beta_3 age + \epsilon$$

Estimate this in R:


```
summary(lm(log(wage) ~ female + university + age, data = dat))
             Estimate Std. Error t value Pr(>|t|)
                                            <2e-16
             2.016700
                                    46.48
(Intercept)
                        0.043388
          -0.152178
                       0.008503
                                   -17.90
                                            <2e-16
female
university
             0.337940
                        0.008409
                                    40.19
                                            <2e-16
             0.026435
                        0.001439
                                            <2e-16
age
```

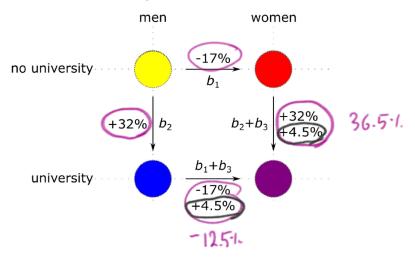
The interpretation of the results is that women make 15% less than men, and that a university degree increases wage by 34%. However, this model does not allow for the

The interpretation of the results is that women make 15% less than men, and that a university degree increases wage by 34%. However, this model does not allow for the possibility that education has a different effect for women than it does for men. There is a difference between men and women, and there is a difference for a university degree, but there is no difference in the effect of university for men vs. women. See Figure 8.10.

2

Figure 8.10: University makes a difference, and gender makes a difference, but there is not a separate difference for university educated women.

3


```
\begin{array}{c}
\mathbf{1} & \mathbf{1} \\
\log(wage) = \beta_0 + \beta_1 female + \beta_2 university + \beta_3 \mathbf{)} female \times university + \beta_4 age + \epsilon
\end{array}
```

where β_3 is the additional percentage increase in wages for women with an education, versus men with an education. In R, we can do this by:

```
summary(lm(log(ahe) ~ female + bachelor + I(female * bachelor) + age,
           data = cps))
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         2.01896
                                    0.04338
                                             46.541
female
                        -0.17347
                                    0.01173 -14.791
                                                      < 2e-16 ***
                        0.31895
                                              28.809
university
                                    0.01107
                                                      < 2e-16 ***
                         0.04489
I(female * university)
                                    0.01704
                                               2.635
                                                      0.00842 **
                         0.02662
                                    0.00144
age
                                              18.479
                                                      < 2e-16 ***
```

It is estimated that women make 17% less than men, that men with a degree make 32% more than men without a degree, and that women with a degree make (32% + 4.5% \approx 36%) more than women without a degree. There is a difference for men, a difference for women, and the difference between these two differences is β_3 (4.5%). See Figure 8.11.

Figure 8.11: University makes a difference, and gender makes a difference, but there is not a separate difference for university educated women.

5