

8 – Nonlinear effects

- Lots of effects in economics are nonlinear
- · Examples diminishing marginal utility, IRTS/DRTS
- Deal with these in two (sort of three) ways:
 - o Polynomials (powers)
 - o Logarithms
 - o Interaction terms (sort of)

1

The linear model

Our models so far are linear.

- Change in Y due to change in X? constant > β₁ = Ay
 See plots for:
 age vs. the
- - o carats vs. diamond price

If the true relationship is nonlinear, then the linear model is misspecified. (A sort of OVB). OLS is biased and inconsistent.

Average hourly earnings (*ahe*) and *age*. CPS data – over 60,000 observations. Linear model vs. polynomial model.

3

(Y) S55 Cage (

Nonlinear effects

If the relationship between Y and X is nonlinear:

- The effect of X on Y depends on the value of X
- The marginal effect of X is not constant
- Need to *specify* a population model that allows the marginal effect to *change* depending on the value of *X*

4

Polynomial regression model

The idea is that non-linear functions can be approximated using polynomials. For example, a polynomial function is:

$$y = \underline{a} + b\underline{x} + \underline{c}\underline{x}^2 + \underline{d}\underline{x}^3 + \underline{e}\underline{x}^4$$

This is a fourth-order polynomial. A second order polynomial is the familiar quadratic equation:

$$y = a + bx + cx^2$$

The validity of the approximation is due to the Taylor series approximation. See:

http://en.wikipedia.org/wiki/Taylor_series#/media/File:Exp_series.gif

We won't discuss the Taylor series here.

The (polynomial) population model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^0 + \dots + \beta_r X_1^r + \epsilon$

- This is just the linear model, but regressors are powers of X_1
- Other variables can be added as usual
- Estimation, hypothesis testing same as usual
- NOT a violation of perfect multicollinearity
- Usually just a squared term is enough (quadratic model)

Determining P

The degree of the polynomial can be determined by starting high and use t and F tests to get it smaller.

For example, in the model:

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \epsilon$ $|H_0: \beta_2 = 0$

The null hypothesis H_0 : $\beta_2 = 0$ the null hypothesis says that X_1 has a linear effect, while the alternative hypothesis says it has a nonlinear effect. 9 linear

7

Interpreting the estimated β s

In the model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \epsilon$$

 β_1 and β_2 don't make much sense by themselves – they kind of go together.

To interpret the estimated regression:

- Plot predicted values
- Consider specific scenarios take differences

Exercise. Use the diamond data.

- a) Regress price on carat. Interpret your results.
- b) Estimate a quadratic model.
- c) Test the hypothesis that *carat* has a linear effect on *price*.
- d) Interpret your results from the quadratic model.
- e) Should we have used a cubic model?

9

Answers

a) Load the data:

```
diamond <-
read.csv("https://rtgodwin.com/data/diamond.csv")
```

Estimate:

```
summary(lm(price ~ carat, data=diamond))
```

10

```
coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
                     158.5 -14.50 <2e-16 ***
(Intercept) -2298.4
          11598.9 230.1 50.41 <2e-16 ***
carat
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1118 on 306 degrees of freedom
Multiple R-squared: 0.8925, Adjusted R-squared: 0.8922
F-statistic: 2541 on 1 and 306 DF, p-value: < 2.2e-16
```

Interpretation: when carats increases by 1, price increases by \$11599. Or, for each 0.1 increase in carat, price increases by \$1160.

Plot it:

Doesn't look very good! The size of the diamond doesn't matter same marginal effect everywhere.

12

b) The quadratic model is:

$$price = \beta_0 + \beta_1 carat + \beta_2 carat^2 + \epsilon$$

We include the $carat^2$ variable in lm() using the l() function. We include the term:

carat^2

where the \(^\) is the power operator (shift-6). Estimate the quadratic model:

summary(lm(price ~ carat + I(carat^2), data=diamond))

coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1017 on 305 degrees of freedom Multiple R-squared: 0.9112, Adjusted R-squared: 0.9106 F-statistic: 1565 on 2 and 305 DF, p-value: < 2.2e-16

- c) Reject! Look at the *** on carat?.

 Ho: Bz = 0 (linear effect) Ha: Bz # 0 (non-linear effect)
- d) Interpretation is tricky. Sign of the squared term? We can draw
- it! Blue squares are some OLS predicted values.

15

The key is to consider specific scenarios (predicted values). For example, we could consider the effect of a 0.1 increase in *carats*, for different *carat* sizes.

$$\begin{array}{c} \widehat{price}|_{carat=0.2} = -42.51 + 2786.10(0.2) + 6961.71(0.2^2) \\ = 793.18 \\ \widehat{price}|_{carat=0.3} = -42.51 + 2786.10(0.3) + 6961.71(0.3^2) \\ = 1419.88 \\ \widehat{price}|_{carat=0.3} - \widehat{price}|_{carat=0.2} = 626.70 \end{array}$$

A 0.1 increase in *carat* increases price by \$627, when the diamond is small (0.2 carats). This effect was \$1160 in the linear model.

626.6952

18

We should consider a change under a different scenario.

$$price|_{carat} = -42.51 + 2786.10(1) + 6961.71(1^2) = 9705$$

 $price|_{carat} = -42.51 + 2786.10(1.1) + 6961.71(1.1^2)$
= 11446

$$price|_{carat=1,-} price|_{carat=14} = 1741$$

A <u>0.1 increase</u> in *carat* increases price by \$1741, when the diamond is large (1 carat). This effect was \$1160 in the linear model.

(In the nonlinear model, the marginal effect depends on the size of the diamond).

e) Estimate a cubic model:

```
price = \beta_0 + \beta_1 carat + \beta_2 carat^2 + \beta_3 carat^3 + \epsilon
```

To estimate the model, use:

```
summary(lm(price ~ carat + I(carat^2) + I(carat^3),
    data=diamond))
```

20

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 786.3 765.4 1.027 0.3051

carat -2564.2 4636.9 -0.553 0.5807

I(carat^2) 16638.9 8185.3 2.033 0.0429 *

I(carat^3) -5162.5 4341.9 -1.189 0.2354

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1017 on 304 degrees of freedom
```

Residual standard error: 1017 on 304 degrees of freedom Multiple R-squared: 0.9116, Adjusted R-squared: 0.9107 F-statistic: 1045 on 3 and 304 DF, p-value: < 2.2e-16

carat^3 is insignificant. The quadratic specification is good enough.

lend for midden 2