

6 – Multiple Regression

More than one "X" variable.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \epsilon_i$$
 (6.1)

Why?

- Might be interested in more than one marginal effect
- Omitted Variable Bias (OVB)

An omitted X_2 variable that is correlated with X_1 , and that also determines Y, will make estimation of the true effect of X_1 on

6.1 and 6.2 – House prices and OVB

Should I build a fireplace? You are "flipping" a house. Bux Cheap, fix it up, sell it.

The following empirical example uses data on house prices, in the New York area in 2002-2003 (the data are from Richard De Veaux of Williams College).

Let's try to determine the value of a fireplace. First, load the data and take a look at it.

houses <read.csv("http://rtgodwin.com/data/houseprice.csv")</pre>

head(houses)

The "head" command prints out the first 6 observations from each variable. You should see something like:

Price	Lot.Size	Waterfront	Age	Land.Value	New.Construct
132500	0.09	0	42	50000	0
181115	0.92	0	0	22300	0
109000	0.19	0	133	7300	0
155000	0.41	0	13	18700	0
86060	0.11	0	0	15000	1
120000	0.68	0	31	14000	0
Central.Air	Fuel.Type	Heat.Type	Sewer.Type	Living.Area	Pct.College
0	3	4	2	906	35
0	2	3	2	1953	51
0	2	3	3	1944	51
0	2	2	2	1944	51
1	2	2	3	840	51
0	2	2	2	1152	22
Bedrooms	Fireplaces	Bathrooms	Rooms		
2	1	1.0	5		
3	0	2.5	6		
4	1	1.0	8		
3	1	1.0	5		
2	0	1.0	3		
4	1	1.0	8		

We are interested in the effect of the variable *Fireplaces* on *Price*. Is *Fireplaces* a dummy variable?

```
Summary (house$Fireplaces)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.6019 1.0000 4.0000
```

Before we proceed, let's instead measure *Price* in thousands of dollars:

```
house$Price = house$Price / 1000
```

Now, let's see the relationship between Fireplaces and Price.

```
plot(house$Fireplaces, house$Price)
```


Let's see the average Price conditional on different number of Fireplaces:

```
mean(house$Price[house$Fireplaces == 0])
[1] 174.6533
mean(house$Price[house$Fireplaces == 1])
[1] 235.1629
mean(house$Price[house$Fireplaces == 2])
[1] 318.8214
mean(house$Price[house$Fireplaces == 3])
[1] 360.5
mean(house$Price[house$Fireplaces == 4])
[1] 700
```

Correlation?

```
cor(house$Price, house$Fireplaces)
[1] 0.3767862
```

It appears that the more Fireplaces, the higher the Price.

Let's try estimating the population model:

$$Price_i = \beta_0 + \beta_1 Fireplaces_i + \epsilon_i$$

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept) 171.824 3.234 53.13 <2e-16 ***

Fireplaces 66.699 3.947 16.90 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1

Residual standard error: 91.21 on 1726 degrees of freedom Multiple 3-squared 0.142. Adjusted R-squared: 0.1415

F-statistic: 285.6 on 1 and 1726 DF, p-value: <2.2e-16Adding a fireplace \Rightarrow 7 price of 67 K on avg.

Questions:

• What is the marginal effect of Fireplaces on Price? #67 k

• How much does it cost to install a fireplace? mox 20 K

• Should I install a fireplace in my home? YES Benefit > Cost (67 > 20)

· What the ? is going on here? Model is wrong > can't trust 67K

• What do you think the main determinant of Price should be?

SIZE = sq. foctage

The above plot was generated using the code:

plot(house\$Living.Area, house\$Price)

Is there a positive relationship between Living. Area and Price? YF5

Now, estimate the model:

$$Price_i = \beta_0 + \beta_1 Living. Area_i + \epsilon_i$$


```
summary(lm(Price ~ Living.Area))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.439394 4.992353 2.692 0.00717 **
Living.Area 0.113123
                    ) 0.002682 42.173 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 69.1 on 1726 degrees of freedom
Multiple R-squared: 0.5075,
                         Adjusted R-squared: 0.5072
F-statistic: 1779 on 1 and 1726 DF, p-value: < 2.2e-16
 • What is the marginal effect? Price 7 $ 110 for every +1 sq.fl.
```

 What might be a problem with determining these two marginal effects Living. Area & Fireplaces are correlated

cor(Living.Area, Fireplaces)

[1] 0.4737878

- If the variable Living. Area is excluded from the original regression, then it goes into the error term, () E:
- If Living Area and Fireplaces are positively correlated, then more fireplaces
- That is, the error term is correlated with the "X" variable, and sometime violated! The OLS estimator for β_1 in the first regression will be bigget.

How can we take care of this problem? Include both variables in the model!

$$Price_i = \beta_0 + \beta_1 Fireplaces_i + \beta_2 Living. Area_i + \epsilon_i$$

Price = fot fifire + Baliving + E

```
summary(lm(Price ~ Fireplaces + Living.Area, data = house))
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
             4 730146
                        5.007563
                                   2.942 0.00331 **
             0.109313 0.003041
                                 35.951
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 68.98 on 1725 degrees of freedom
Multiple R-squared: 0.5095, Adjusted R-squared: 0.5089
F-statistic: 895.9 on 2 and 1725 DF, p-value: < 2.2e-16
```

• Notice how the estimated marginal effects have changed. 67k > 9K

- Notice that Fireplaces is now a lot less significant.
- This is an example of omitted variable bias (OVB).

Omitted Variable Bias

$$Price = 171.82 + 66.70 \times Fireplaces, R^2 = 0.142$$
(3.23) (3.95)

$$Price = 14.73$$
 (8.96) $Fireplaces + 0.11$ (5.01) (3.39) (0.003)

17

Several results have changed with the addition of the Living. Area variable:

- The estimated value of an additional fireplace has dropped from \$66,699 to \$8,962.
- The \mathbb{R}^2 has increased from 0.142 to 0.5095.
- The estimated intercept has changed by a lot (but this is unimportant).
- There is a new estimated β : $b_2 = 0.11$. This means that, it is estimated that an additional square-foot of house size increases price by \$110.

Omitted Variable Bias

- Omitted variable bias (OVB) occurs when one or more of the variables in the random error term ϵ are related to one or more of
- the X variables X and X are independent. OVB is a violation of this assumption, resulting in bias and inconsistency of OLS
- \checkmark Suppose that *X* and *Z* both cause *Y*
- Suppose that X and Z both cause Y
 Suppose X and Z are correlated
 What happens when X changes? both Z and Y D both S and indirect A in Y.
 What is the problem with attributing changes in X to changes in Y?

Solution, include the omitted variable if possible