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Logarithms

Another way to approximate the non-linear relationship between Y
and X is by using logarithms.

▶ Logarithms can be used to approximate a percentage change.

▶ If the relationship between two variables can be expressed in
terms of proportional or percentage changes, then it is a type of
non-linear effect.

▶ To see this, consider a 1% increase in 100 (which is 1), and a 1%
increase in 200 (which is 2). The same 1% increase can be
generated by different changes in the variable (e.g. a change of 1
or of 2).



3/18

For example, consider an increase in hourly wage of $1.

▶ That is not a big increase for someone making $50 per hour (an
increase of only 2%).

▶ This change in wage is unlikely to have much effect on the
behaviour of the individual.

▶ However, imagine an individual whose hourly wage is only $1 per
hour. An increase of $1 doubles the wage (100% increase)!

▶ This is likely to have a big impact on behaviour.

▶ It is desirable to measure thinks like wage in terms of
proportional or percentage changes (regardless of whether it is
included in a model as the dependent variable or as a regressor).

▶ This can be accomplished by using the log of the variable in the
regression model, instead of the variable itself.
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Percentage change

Let’s be explicit about what is meant by a percentage change. A
percentage change in X is:

∆X

X
× 100 =

X2 −X1

X1
× 100

where X1 is the starting value of X, and X2 is the final value.
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Logarithm approximation to percentage change

The approximation to percentage changes using logarithms is:

log (X +∆X)− log (X)× 100 ≈ ∆X

X
× 100

or

log (X2 −X1)× 100 ≈ X2 −X1

X1
× 100

▶ So, when X changes, the change in log(X) is approximately equal
to a percentage change in X.

▶ The approximation is more accurate the smaller the change in X.

▶ The approximation does not work well for changes above 10%.
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Table: Percentage change, and approximate percentage change using the log
function.

Change in X % change: Approx. % change:
X1 X2

X2−X1

X1
× 100 (logX2 − logX1)× 100

1 2 100% 69.32%
1 1.1 10% 9.53%
1 1.01 1% 0.995%
5 6 20% 18.23%
11 12 9.09% 8.70%
11 11.1 0.91% 0.91%
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Logs in the population model

The log function can be used in our population model so that the βs
have various percentage changes interpretations. There are three ways
we can introduce the log function into our models. The three different
possibilities arise from taking logs of the left-hand-side variable, one
or more of the right-hand-side variables, or both.

Table: Three population models using the log function.

Population model Population regression function
I. linear-log Y = β0 + β1 logX + ϵ
II. log-linear log Y = β0 + β1X + ϵ
III. log-log log Y = β0 + β1 logX + ϵ
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For each of the three different population models above, β1 has a
different percentage change interpretation. We don’t derive the
interpretations of β1, but instead list them for the three different
cases in table 2:

▶ linear-log: a 1% change in X is associated with a 0.01β1 change
in Y .

▶ log-linear: a change in X of 1 is associated with a 100× β1%
change in Y .

▶ log-log: a 1% change in X is associated with a β1% change in Y .
β1 can be interpreted as an elasticity.
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A note on R2

R2 and R̄2 measure the proportion of variation in the dependent
variable (Y ) that can be explained using the X variables.

▶ When we take the log of Y in the log-linear or log-log model, the
variance of Y changes.

▶ That is, Var[log Y ] ̸= Var[Y ].

▶ We cannot use R2 or R̄2 to compare models with different
dependent variables.

▶ That is, we should not use R2 to decide between two models,
where the dependent variable is Y in one, and log Y in the other.
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Log-linear model for the CPS data

It is common to use the log of wage as the dependent variable, instead
of just wage. This allows for the factors that determine differences in
wages be associated with approximate percentage changes in wage. In
the following, we’ll see an example of a log-linear model estimated
using the CPS data. Start by loading the data:

1 install.packages("AER")

2 library(AER)

3 data("CPS1985")

and estimate a log-linear model:

log(wage) = β0 + β1education+ β2gender+ β3age+ β4experience+ ϵ
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1 summary(lm(log(wage) ~ education + gender + age + experience

, data = CPS1985))

1 Estimate Std. Error t value Pr(>|t|)

2 (Intercept) 1.15357 0.69387 1.663 0.097 .

3 education 0.17746 0.11371 1.561 0.119

4 genderfemale -0.25736 0.03948 -6.519 1.66e-10 ***

5 age -0.07961 0.11365 -0.700 0.484

6 experience 0.09234 0.11375 0.812 0.417
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▶ The interpretation of the estimated coefficient on education, for
example, is that a 1 year increase in education is associated with
a 17.8% increase in wage.

▶ The interpretation of the coefficient on the dummy variable
genderfemale is a bit more tricky.

▶ It is estimated that women make
(100× (exp(−0.257)− 1) = −22.7%) 22.7% less than men.

▶ For simplicity, however, we can say that women make
approximately 25.7% less than men, but you should know that
this interpretation is actually wrong.

▶ The advantage of using log wage as the dependent variable is
that it allows the estimated model to capture non-linear effects.

▶ The 25.7% decrease in wages for women means that the dollar
difference in wages between women and men in high-paying jobs
(such as medicine) is larger than the dollar difference in wages
between women and men in lower-paying jobs.
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Log-log model for CO2 emissions

In this section, we use data on per capita CO2 emissions, and GDP
per capita (data is from 2007). We will suppose that CO2 emissions is
the dependent variable. Load the data, and create the plot:

1 co2 <- read.csv("http://rtgodwin.com/data/co2.csv")

2 plot(co2$gdp.per.cap , co2$co2 ,

3 ylab = "CO2 emissions per capita",

4 xlab = "GDP per capita")
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Figure: Per capita CO2 emissions and GDP.
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Consider this (possibly wrong) population model:

CO2 = β0 + β1GDP + ϵ (1)

▶ As GDP gets larger, CO2 emissions are all over the place.

▶ The problem with model 1 is that GDP has the same effect on
CO2 everywhere (for all levels of GDP).

▶ Since energy consumption (which produces CO2 emissions) is a
relatively inelastic good, it may be reasonable to think that an
increase in GDP per capita of say $1000 has a much bigger
impact on CO2 emissions when GDP per capita is low.

▶ That is, their may be a non-linear relationship.
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If we take the logs of CO2 and GDP per capita, then we are saying
that percentage changes in per-capita GDP lead to percentage
changes in CO2:

log(CO2) = β0 + β1 log(GDP ) + ϵ (2)

Plot the data:

1 plot(log(co2$gdp.per.cap), log(co2$co2),

2 ylab = "log CO2 emissions per capita", xlab = "log GDP

per capita")
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Figure: Log per capita CO2 emissions and log GDP.
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Now, let’s estimate model 2:

1 co2mod <- lm(log(co2) ~ log(gdp.per.cap), data = co2)

2 summary(co2mod)

1 Coefficients:

2 Estimate Std. Error t value Pr(>|t|)

3 (Intercept) -9.94045 0.36806 -27.01 <2e-16 ***

4 log(gdp.per.cap) 1.20212 0.04234 28.39 <2e-16 ***

5 ---

6 Signif.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

7

8 Residual standard error: 0.6642 on 132 degrees of freedom

9 Multiple R-squared: 0.8593 , Adjusted R-squared: 0.8582

10 F-statistic: 806.1 on 1 and 132 DF , p-value: < 2.2e-16

The interpretation of the results is that for every 1% increase in GDP
per capita, it is estimated that CO2 emissions increase by 1.2%.


